Chapter 2
Boolean Algebra and Logic Gates

2.1 INTRODUCTION

Because binary logic is used in all of today's digital computers and devices, the cost of the
circuits that implement it is an important factor addressed by designers. Finding simpler and
cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the over-
all cost of the design. Mathematical methods that simplify circuits rely primarily on Boolean
algebra. Therefore, this chapter provides a basic vocabulary and a brief foundation in
Boolean algebra that will enable you to optimize simple circuits and to understand the pur-
pose of algorithms used by software tools to optimize complex circuits involving millions
of logic gates.

2.2 BASIC DEFINITIONS

36

Boolean algebra, like any other deductive mathematical system, may be defined with a set of
elements, a set of operators, and a number of unproved axioms or postulates. A ser of elements
is any collection of objects, usually having a common property. If § is a set, and x and y are cer-
tain objects, then x € § means that x is a member of the set § and y ¢ S means that y is not an
element of S. A set with a denumerable number of elements is specified by braces:
A = {1, 2,3, 4} indicates that the elements of set A are the numbers 1, 2, 3, and 4. A binary
operator defined on a set § of elements is a rule that assigns, to each pair of elements from S,
a unique element from S. As an example, consider the relation a*bh = ¢. We say that * is a
binary operator if it specifies a rule for finding ¢ from the pair (@, b) and also if a, b, ¢ € S. How-
ever, * is not a binary operatorif a, be S, if cg §.
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The postulates of a mathematical system form the basic assumptions from which it is pos-
sible to deduce the rules, theorems, and properties of the system. The most common postulates
used to formulate various algebraic structures are as follows:

L
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Closure. A se1 § is closed with respect to a binary operator if, for every pair of elements
of S, the binary operator specifies a rule for obtaining a unique element of S. For example,
the set of natural numbers N = {1,2.3,4,... } is closed with respect to the binary
operator + by the rules of arithmetic addition, since, for any a. b € N, there is a unique
ce N suchthata + b = ¢. The set of natural numbers is nor closed with respect to the
binary operator — by the rules of arithmetic subtraction, because 2 — 3 = —1 and 2,
leN. but(—1)egN.

Associative law, A binary operator * on a set § is said to be associative whenever
(x*y)*z = x*(y*z) forall x.v.2.€§
Commutative law. A binary operator * on a set § is said to be commutative whenever
x*y = y*xforallx,yeS
Identity element. A set § is said to have an identity element with respect to a binary op-
eration * on § if there exists an element e € § with the property that
e*x = x*e = xforevery xe§
Example: The element () is an identity element with respect to the binary operator + on
the setof integers / = { ..., -3.-2,.-1.0,1.2.3.... }, since
x+0=0+x=xforanyxel

The set of natural numbers, N, has no identity element, since 0 is excluded from the set.

. Inverse. A set § having the identity element e with respect to a binary operator * is said

to have an inverse whenever, for every x e §, there exists an element v € § such that
x*y=e¢

Example: In the set of integers, /. and the operator +, with ¢ = 0, the inverse of an ele-

mentais(—a}).sincea + (—a) = 0.

Distributive law. If * and + are two binary operators on a set 8, * 1s said to be distrib-

utive over * whenever

x*(yez) = (x*y) (x*z2)

A field is an example of an algebraic structure. A field is a set of elements, together with two
binary operators, each having properties | through 5 and both operators combining to give
property 6. The set of real numbers, together with the binary operators + and -, forms the
field of real numbers. The field of real numbers is the basis for arithmetic and ordinary alge-
bra. The operators and postulates have the following meanings:

The binary operator + defines addition.
The additive identity is 0.
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The additive inverse defines subtraction.

The binary operator + defines multiplication.

The multiplicative identity is 1.

For a # 0, the multiplicative inverse of @ = 1/a defines division (i.e.,a*1/a = 1),
The only distributive law applicable is that of - over +:

a*(b+c)=(a*b) + (a-c)

2.3 AXIOMATIC DEFINITION

OF BOOLEAN ALGEBRA

In 1854, George Boole developed an algebraic system now called Boolean algebra. In 1938,
C. E. Shannon introduced a two-valued Boolean algebra called switching algebra that repre-
sented the properties of bistable electrical switching circuits. For the formal definition of
Boolean algebra, we shall employ the postulates formulated by E. V. Huntington in 1904,

Boolean algebra is an algebraic structure defined by a set of elements, B, together with

two binary operators, + and -, provided that the following (Huntington) postulates are
satisfied:

1. (a) The structure is closed with respect to the operator +.
(b) The structure is closed with respect to the operator .

2, (a) Theelement 0 is an identity element with respectto +; thatis, x + 0 =0 + x = x,
(b) The element 1 is an identity element with respect to *; thatis, x+1 = 1-x = x.

3. (a) The structure is commutative with respectto +; thatis, x + y = y + x.
(b) The structure is commutative with respect to «; thatis, x*y = v+ x.

4. (a) The operator * is distributive over +; thatis, x+(y + z) = (x-y) + (x-2).
(b) The operator + is distributive over - thatis,x + (y*z) = (x + ¥)*(x + z).

5. For every element x € B, there exists an element x' € B (called the complement of x)
suchthat(@a)x + x’' = land (b) x+x" = 0.

6. There exist at least two elements x, y € B such that x # v.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num-

bers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over * (i.e., x + (y*2) = (x + ¥) - (x + 2)), is valid for
Boolean algebra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are no
subtraction or division operations.
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4. Postulate 5 defines an operator called the complement that is not available in ordinary
algebra.

5. Ordinary algebra deals with the real numbers, which constitute an infinite set of ele-
ments. Boolean algebra deals with the as yet undefined set of elements, 8, but in the
two-valued Boolean algebra defined next (and of interest in our subsequent use of that
algebra), B is defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects, The choice of the
symbols + and - is intentional, to facilitate Boolean algebraic manipulations by persons
already familiar with ordinary algebra. Although one can use some knowledge from ordinary
algebra to deal with Boolean algebra, the beginner must be careful not to substitute the rules
of ordinary algebra where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic structure and
the variables of an algebraic system. For example. the elements of the field of real numbers are
numbers, whereas variables such as a. b, ¢, etc.. used in ordinary algebra, are symbols that
stand for real numbers. Similarly. in Boolean algebra, one defines the elements of the set B, and
variables such as x, y, and z are merely symbols that represent the elements, At this point, it is
important to realize that, in order to have a Boolean algebra, one must show that

1. the elements of the set B,
2. the rules of operation for the two hinary operators, and

3. the set of elements, B, together with the two operators. satisfy the six Huntington
postulates.

One can formulate many Boolean algebras, depending on the choice of elements of B and
the rules of operation, In our subsequent work, we deal only with a two-valued Boolean alge-
bra (i.e.. a Boolean algebra with only two elements). Two-valued Boolean algebra has appli-
cations in set theory (the algebra of classes) and in propositional logic. Our interest here is in
the application of Boolean algebra to gate-type circuits.

Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, 8 = {0, 1}, with rules for
the two binary operators + and « as shown in the following operator tables (the rule for the
complement operator is for verification of postulate 5):

X y | xy x X+ y x|
0 0 0 0 0 0 0 1
0 1 0 0 1 1 | 0
1 0 0 1 0 1
1 1 I 1 1 1
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These rules are exactly the same as the AND, OR, and NOT operations, respectively, defined
in Table 1.8. We must now show that the Huntington postulates are valid for the set B = {0, 1}
and the two binary operators + and +.

1.

2.

3

6.

That the structure is closed with respect to the two operators is obvious from the tables,
since the result of each operation is either 1 orOand 1, 0 e B.

From the tables, we see that

(@ 0+0=20 O0+1=1+0=1;

(b) 1:1=1 1:0=0-1=0.

This establishes the two identity elements, 0 for + and 1 for -+, as defined by postu-
late 2.

The commutative laws are obvious from the symmetry of the binary operator tables.

. (@) The distributive law x+(y + z) = (x+y) + (x-z) can be shown to hold from the

operator tables by forming a truth table of all possible values of x, y, and z. For each
combination, we derive x* (y + z) and show that the value is the same as the value of

(x=y) + (x-2):

x y z y+z |[x(y+2 x.y | x+z (x-y) + (x-2)
0o 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
o 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
10 1 1 I 0 | 1
1 1 0 1 I 1 0 1
11 1 | 1 I 1 1

(b) The distributive law of + over * can be shown to hold by means of a truth table sim-
ilar to the one in part (a).

. From the complement table, it is easily shown that

() x+x"=1,since0+0'=0+1=landl +1"=1+0= 1.
(b) x*x' = 0,since 00" =0-1=0and1-1"=1-0 = 0.
Thus, postulate 1 is verified.

Postulate 6 is satisfied because the two-valued Boolean algebra has two elements, 1 and
0, with 1 # Q.

We have just established a two-valued Boolean algebra having a set of two elements, 1 and 0,
two binary operators with rules equivalent to the AND and OR operations, and a complement op-
erator equivalent to the NOT operator. Thus, Boolean algebra has been defined in a formal math-
ematical manner and has been shown to be equivalent to the binary logic presented heuristically
in Section 1.9. The heuristic presentation is helpful in understanding the application of Boolean
algebra to gate-type circuits, The formal presentation is necessary for developing the theorems



Section 2.4 Basic Theorems and Properties of Boolean Algebra 41

and properties of the algebraic system. The two-valued Boolean algebra defined in this section
is also called “switching algebra™ hy engineers. To emphasize the similarities between two-valued
Boolean algebra and other binary systems, that algebra was called “binary logic™ in Section 1.9,
From here on, we shall drop the adjective “two-valued” from Boolean algebra in subsequent
discussions.

2.4 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALGEBRA

Duality

In Section 2.3, the Huntington postulates were listed in pairs and designated by part (a) and part
(b). One part may be obtained from the other if the binary operators and the identity elements
are interchanged, This important property of Booleun algebra is called the duality principle
and states that every algebraic expression deducible from the postulates of Boolean algebra re-
mains valid if the operators and identity elements are interchanged. In a two-valued Boolean
algebra, the identity elements and the elements of the set 8 are the same: | and 0. The duality
principle has many applications. If the dral of an algebraic expression is desired, we simply
interchange OR and AND operators and replace ['s by 0's and 0's by 1.

Basic Theorems

Table 2.1 lists six theorems of Boolean algebra and four of its postulates, The notation is sim-
plified by omitting the binary operator whenever doing so does not lead to confusion. The the-
orems and postulates listed are the most basic relationships in Boolean algebra. The theorems,
like the postulates, are listed in pairs; each relation is the dual of the one paired with it. The
postulates are basic axioms of the algebraic structure and need no proof. The theorems must
be proven from the postulates. Proofs of the theorems with one variable are presented next.
Al the right is listed the number of the postulate which justifies that particular step of the
proof.

Table 2.1

Postulates and Theorems of Boolean Algebra
Postulate 2 () X+0=x (b) xl=x
Postulate 5 (a) r+x =1 (b) xx'=0
Theorem 1 (a) rhx=x (b) X-Xx=x
Theorem 2 (a) x+l=1 (b) x0=0
Theorem 3. involution (x')=x
Postulate 3, commutative (a) XH*y=y+x (b) xy =
Theorem 4, associative @x+(y+2)=(c+y)+:z (b) x(yz) = (xv)z
Postulate 4, distributive (a) x(y+3)=xv+ a2 by x+yz=(x+y}x+2)
Theorem 5, DeMorgan (a) (v +y) = x'y (b (xy) =x" + '
Theorem 6, absorption (a) X+ xy=x B x(x+y)=x
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THEOREM 1(a): x + x = x.

Statement Justification
x+x=(x+x)-1 postulate 2(b)
=(x + x)(x + x') 5(a)
=x+ xx' 4(b)
=x+0 5(b)

= x 2(a)

THEOREM 1(b): x-x =x.

Statement Justification
xrx=xx+0 postulate 2(a)
= xx + xx' 5(b)

= x(x + x") 4(a)
=x-1 5(a)

=X 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof in part (b)
is the dual of its counterpart in part (a). Any dual theorem can be similarly derived from the
proof of its corresponding theorem.

THEOREM 2(a): x + 1 = L.

Statement Justification
x+1=1(x+1) postulate 2(b)
=(x+x)(x+1) 5(a)
=x+x'1 4(b)
=x+2x 2(h)

=1 5(a)

THEOREM 2(b): x-0 = 0 by duality.

THEOREM 3: (x')’ = x. From postulate 5, we have x + x' = 1 and x+x' = 0, which
together define the complement of x. The complement of x' is x and is also (x")". Therefore,
since the complement is unique, we have (x')" = x. The theorems involving two or three
variables may be proven algebraically from the postulates and the theorems that have
already been proven. Take, for example, the absorption theorem:
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THEOREM 6(a): x + xv = x.

Statement Justification
r+xy=x-1+xy postulate 2(b)
=x(1 +y) 4a)

= x(y + 1) 3(a)

= x+] 2a)

=x 2(b)

THEOREM 6(b): x(x + y) = x by duality.

The theorems of Boolean algebra can be proven by means of truth tables. In truth tables,
both sides of the relation are checked to see whether they yield identical results for all
possible combinations of the variables involved, The following truth table verifies the first
absorption theorem:

x|y :yix+xy
0| o o o
0|1 0 0
1 |o 0 I
I 1 !l 1

The algebraic proofs of the associative law and DeMorgan’s theorem are long and will not
be shown here. However, their validity is easily shown with truth tables. For example, the truth
table for the first DeMorgan’s theorem, (x + ¥)’ = x'y', is as follows:

x y | x+ ¥ (x + y) x' Yy xy
0o o 0 1 1 1 1
0 1 1 | 0 | 0 0
10 1 0 0 1 0
1 1 1 0 0 0 0

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses, (2) NOT, (3)
AND, and (4) OR. In other words, expressions inside parentheses must be evaluated before
all other operations. The next operation that holds precedence is the complement, and then fol-
lows the AND and, finally, the OR. As an example, consider the truth table for one of De-
Morgan's theorems. The left side of the expression is (x + v)". Therefore. the expression
inside the parentheses is evaluated first and the result then complemented. The right side of
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the expression is x'y’, so the complement of x and the complement of y are both evaluated first

and the result is then ANDed. Note that in ordinary arithmetic, the same precedence holds (except
for the complement) when multiplication and addition are replaced by AND and OR, respectively.

2.5 BOOLEAN FUNCTIONS

Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and
1, and the logic operation symbols. For a given value of the binary variables, the function can
be equal to either 1 or 0. As an example, consider the Boolean function
Fr=x+y'z

The function Fj is equal to 1 if x is equal to | or if both y" and z are equal to 1. Fj is equal to
0 otherwise. The complement operation dictates that when y’ = 1, y = 0. Therefore, F; = 1
ifx = lorify = Oand z = 1. A Boolean function expresses the logical relationship between
binary variables and is evaluated by determining the binary value of the expression for all pos-
sible values of the variables.

A Boolean function can be represented in a truth table. The number of rows in the truth
table is 2", where n is the number of variables in the function. The binary combinations for the
truth table are obtained from the binary numbers by counting from O through 2" — 1. Table 2.2
shows the truth table for the function F;. There are eight possible binary combinations for as-
signing bits to the three variables x, y, and z. The column labeled F| contains either 0 or 1 for
each of these combinations. The table shows that the function is equal to 1 when x = 1 or
when yz = 01 and is equal to 0 otherwise.

A Boolean function can be transformed from an algebraic expression into a circuit diagram
composed of logic gates connected in a particular structure. The logic-circuit diagram (also
called a schematic) for F) is shown in Fig. 2.1. There is an inverter for input y to generate its
complement. There is an AND gate for the term y'z and an OR gate that combines x with y'z.
In logic-circuit diagrams, the variables of the function are taken as the inputs of the circuit and
the binary variable F, is taken as the output of the circuit.

There is only one way that a Boolean function can be represented in a truth table. However,
when the function is in algebraic form, it can be expressed in a variety of ways, all of which

Table 2.2

Truth Tables for F, and F;
x Yy z F F
0 0 0 0 0
0 0 | 1 1
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 0 | 0
1 1 | | 0
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FIGURE 2.1
Gate implementation of Fy = x + y'z
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(b F=xy' +x'z

FIGURE 2.2
Implementation of Boolean function F; with gates

have equivalent logic. The particular expression used to represent the function will dictate the
interconnection of gates in the logic-circuit diagram. Here is a key fact that motivates our use
of Boolean algebra: By manipulating a Boolean expression according to the rules of Boolean
algebra, it is sometimes possible to obtain a simpler expression for the same function and thus
reduce the number of gates in the circuit and the number of inputs to the gate. Designers are
motivated to reduce the complexity and number of gates because their effort can significantly
reduce the cost of a circuit. Consider, for example, the following Boolean function:

F=xyz+x'yz +xy'

A schematic of an implementation of this function with logic gates is shown in Fig. 2.2(a).
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Input variables x and y are complemented with inverters to obtain x’ and y'. The three terms
in the expression are implemented with three AND gates. The OR gate forms the logical OR
of the three terms. The truth table for £ is listed in Table 2.2. The function is equal to 1 when
xyz = 001 or 011 or when xy = 10 (irrespective of the value of z) and is equal to 0 otherwise.
This set of conditions produces four 1's and four 0's for F5.

Now consider the possible simplification of the function by applying some of the identities
of Boolean algebra:

BE=xyYe+xyz+xy=x"z(y' +y) + ' =x'z + xy'

The function is reduced to only two terms and can be implemented with gates as shown in
Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both imple-
ment the same function, By means of a truth table, it is possible to verify that the two
expressions are equivalent. The simplified expression is equal to 1 when xz = 01 or when
xy = 10. This produces the same four 1’s in the truth table. Since both expressions produce
the same truth table, they are equivalent. Therefore, the two circuits have the same outputs
for all possible binary combinations of inputs of the three variables. Each circuit implements
the same identical function, but the one with fewer gates and fewer inputs to gates is prefer-
able because it requires fewer wires and components. In general, there are many equivalent
representations of a logic function.

Algebraic Manipulation

EXAMPLE 2.1

When a Boolean expression is implemented with logic gates, each term requires a gate and each
variable within the term designates an input to the gate. We define a literal to be a single vari-
able within a term, in complemented or uncomplemented form. The function of Fig. 2.2(a) has
three terms and eight literals, and the one in Fig. 2.2(b) has two terms and four literals. By re-
ducing the number of terms, the number of literals, or both in a Boolean expression, it is often
possible to obtain a simpler circuit. The manipulation of Boolean algebra consists mostly of re-
ducing an expression for the purpose of obtaining a simpler circuit. Functions of up to five
variables can be simplified by the map method described in the next chapter. For complex
Boolean functions, designers of digital circuits use computer minimization programs that are
capable of producing optimal circuits with millions of logic gates. The concepts introduced in
this chapter provide the framework for those tools. The only manual method available is a cut-
and-try procedure employing the basic relations and other manipulation techniques that be-
come familiar with use, but remain, nevertheless, subject to human error, The examples that
follow illustrate the algebraic manipulation of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals.
L x(x'+y)=xx"+2xy=0+xy=2ay

2, x+xy=(x+x")x+ty)=1l{x+y)=x+y
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A (r+¥)r+y)=x+xv+xn+w=x(l+y+y)=x
4 xy+xlztyr=xy+ x4+ ya{x+ £)
=y + 2’z + ayvz + x'yz
= xy(l +2)+x'2(1 + )
=xy + x'z.
5. (x4 y)(a' + 2)(v + 2) = (x + y)(x" + z), by duality from function 4.

Functions 1 and 2 are the dual of each other and nse dual expressions in corresponding steps.
An easier way to simplify function 3 is by means of postulate 4(b) from Table 2.1:
(x + ¥)(x + v') = x + yv' = x. The fourth function illustrates the fact that an increase in
the number of literals sometimes leads to a simpler final expression. Function 5 is not mini-
mized directly, but can be derived from the dual of the steps used to derive function 4. Fune-
tions 4 and 5 are together known as the consensus theorem.

Complement of a Function

The complement of a function ' is F' and is obtained from an interchange of 0's for 1's and
1's for 0's in the value of F. The complement of a function may be derived algebraically through
DeMorgan’s theorems, listed in Table 2.1 for two variables. DeMorgan’s theorems can be ex-
tended to three or more variables. The three-variable form of the first DeMorgan's theorem is
derived as follows, from postulates and theorems listed in Table 2.1:
(A+B+C) =(A+x) letB+C=x

= A"x' by theorem 5(a) (DeMorgan)
A'(B + C)' substitute B+ C = x
= A'(B'C") by theorem 5(a) (DeMorgan)
= A'B'C’ by theorem 4(b) (associative)

DeMorgan's theorems for any number of variables resemble the two-variable case in form and
can be derived by successive substitutions similar to the method used in the preceding deriva-
tion. These theorems can be generalized as follows:

(A+B+C+D+ - +F) =ABCD..F

(ABCD...F) =A"+B +C' +D' + -+ + F'

The generalized form of DeMorgan's theorems states that the complement of a function is
obtained by interchanging AND and OR operators and complementing each literal,
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EXAMPLE 2.2

Find the complement of the functions F; = x'yz' + x'y'zand /i, = x(y'z’ + yz). By ap-
plying DeMorgan’s theorems as many times as necessary, the complements are obtained as
follows:

Fi = (x'y2' + x'y'2)' = (x'y2")'(x'y'2)' = (x + )’ + 2)(x + y + 2)
Fz= [x(y'2 + y2)I' =x' + (y’Z + yr)'=x"+ (') (»2)’
X+ (y+2)0 +2)

]

x! + '\.:! + .‘"z
-

A simpler procedure for deriving the complement of a function is to take the dual of the func-
tion and complement each literal. This method follows from the generalized forms of DeMor-
gan's theorems. Remember that the dual of a function is obtained from the interchange of AND
and OR operators and 1's and 0's.

EXAMPLE 2.3

Find the complement of the functions F; and F; of Example 2.2 by taking their duals and com-
plementing each literal.

1. Fy = x'yz' + x'y'z.
The dual of Fyis (x' + y + 2')(x" + y' + 2).
Complement each literal: (x + ¥' + z)(x + vy + 2') = F}.
2. =x(y'z" + yz2).
The dual of Fais x + (y' + 2')(y + 2).
Complement each literal: x' + (y + 2)(y' + 2') = Fb.

2.6 CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x').
Now consider two binary variables x and y combined with an AND operation. Since each vari-
able may appear in either form, there are four possible combinations: x'y’, xy, xy’, and xy.
Each of these four AND terms is called a minterm, or a standard product. In a similar manner,
n variables can be combined to form 2" minterms. The 2" different minterms may be determined
by a method similar to the one shown in Table 2.3 for three variables. The binary numbers
from 0to 2" — 1 are listed under the n variables. Each minterm is obtained from an AND term
of the n variables, with each variable being primed if the corresponding bit of the binary num-
ber is a 0 and unprimed if a 1. A symbol for each minterm is also shown in the table and is of
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Table 2.3
Minterms and Maxterms for Three Binary Variables
Minterms Maxterms

X y z Term Designation Term Designation
0 0 0 %'v'g" mo xX+ty+z My
0 0 1 a'y'z my x+y+.2 M
0 1 0 ! m; x4+ ¥tz M,
0 1 1 a'yz ms x5 M;
1 0 0 'z’ my o s O o2 4 My
1 0 1 xy'z ms XAy 4+ Ms
1 1 0 xyz' mg x iyl Mg
1 1 1 xvz my ey M,

Table 2.4

Functions of Three Variables
x y z Function f, Function f;
0 0 0 0 0
0 0 1 1 0
0 1 0 0 ]
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 | 1 1

the form m;, where the subscript j denotes the decimal equivalent of the binary number of the
minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being primed or
unprimed, provide 2" possible combinations, called maxterms, or standard sums. The eight
maxterms for three variables, together with their symbolic designations, are listed in Table 2.3.
Any 2" maxterms for n variables may be determined similarly. It is important to note that
(1) each maxterm is obtained from an OR term of the n variables, with each variable being un-
primed if the corresponding bit is a 0 and primed if a I, and (2) each maxterm is the comple-
ment of its corresponding minterm and vice versa.

A Boolean function can be expressed algebraically from a given truth table by forming a
minterm for each combination of the variables that produces a 1 in the function and then tak-
ing the OR of all those terms. For example, the function £ in Table 2.4 is determined by ex-
pressing the combinations 001, 100, and 111 as x"y'z, xy'z’, and xyz, respectively. Since each
one of these minterms results in f; = 1, we have

H=xyz+ a3z +axyz=m +my+ my
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Similarly, it may be easily verified that
fH=x"yz + xy'z + xyz' + xyz = m3 + ms + mg + my

These examples demonstrate an important property of Boolean algebra: Any Boolean function
can be expressed as a sum of minterms (with “sum™ meaning the ORing of terms).

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a 0 in the function and then ORing
those terms, The complement of f] is read as

fi=xy7 +x'yz' + x'yz + xy'z + xyz'
If we take the complement of f, we obtain the function f;:
fi= @ty + )ty + 0 +y+ ) +y +2)
= My* M3+ My Ms+ M
Similarly, it is possible to read the expression for f; from the table:
L=x+y+)x+y+2)Nx+y +2)(x +y+2)
= MqMM>M,

These examples demonstrate a second property of Boolean algebra: Any Boolean function can
be expressed as a product of maxterms (with “product” meaning the ANDing of terms). The
procedure for obtaining the product of maxterms directly from the truth table is as follows:
Form a maxterm for each combination of the variables that produces a 0 in the function, and
then form the AND of all those maxterms. Boolean functions expressed as a sum of minterms
or product of maxterms are said to be in canonical form.

Sum of Minterms

Previously, we stated that, for n binary variables, one can obtain 2" distinct minterms and that
any Boolean function can be expressed as a sum of minterms. The minterms whose sum de-
fines the Boolean function are those which give the 1's of the function in a truth table. Since
the function can be either 1 or 0 for each minterm, and since there are 2" minterms, one can
calculate all the functions that can be formed with n variables to be 22", It is sometimes con-
venient to express a Boolean function in its sum-of-minterms form. If the function is not in this
form, it can be made so by first expanding the expression into a sum of AND terms, Each term
is then inspected to see if it contains all the variables. If it misses one or more variables, it is
ANDed with an expression such as x + x', where x is one of the missing variables. The next
example clarifies this procedure.

EXAMPLE 2.4

Express the Boolean function F = A + B'C as a sum of minterms. The function has three
variables: A, B, and C. The first term A is missing two variables; therefore,

A= A(B + B') = AB + AB'
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This function is still missing one variable, so
A= AB(C + C') + AB'(C + (")
= ABC + ABC' + AB'C + AB'C’

The second term B'C is missing one variable; hence.

B'C=RBC(A+ A') = AB'C + A'B'C
Combining all terms, we have

F=A+BC
= ABC + ABC' + AB'C + AB'C' + A'B'C

But AB'C appears twice, and according to theorem 1 (x + x = x), it is possible to remove
one of those occurrences. Rearranging the minterms in ascending order, we finally obtain

F=AB'C+ AB'C + AB'C + ABC' + ABC
ny o+ omy + oms + mg + my

When a Boolean function is in its sum-of-minterms form. it is sometimes convenient (o express
the function in the following brief notation:

F(A,B.C) = Z(1.4.5,6,7)

The summation symbol 3 stands for the ORing of terms; the numbers following it are the
minterms of the function. The letters in parentheses following F form a list of the variables in
the order taken when the minterm is converted to an AND term,

An alternative procedure for deriving the minterms of a Boolean function is to obtain the
truth table of the function directly from the algebraic expression and then read the minterms
from the truth 1able. Consider the Boolean function given in Example 2.4:

F=A+BC

The truth table shown in Table 2.5 can be derived directly from the algebraic expression by list-
ing the eight binary combinations under variables A, B, und C and inserting 1's under F for those

Table 2.5

Truth Table for F = A + B'C
A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 Q 1
1 0 1 |
1 1 0 1
1 1 1 1
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combinations for which A = 1 and BC = 01. From the truth table, we can then read the five
minterms of the functiontobe 1,4, 5, 6, and 7.

Product of Maxterms

Each of the 2%" functions of n binary variables can be also expressed as a product of maxterms.
To express a Boolean function as a product of maxterms, it must first be brought into a form
of OR terms. This may be done by using the distributive law, x + yz = (x + y)(x + 2).
Then any missing variable x in each OR term is ORed with xx'. The procedure is clarified in
the following example.

EXAMPLE 2.5

Express the Boolean function F = xy + x'z as a product of maxterms. First, convert the func-
tion into OR terms by using the distributive law:

F=xy+x'z= (xy + x")(xy + z)
=(x+x")(y + ) (x+2)(y + 2)
= (x" +y)(x + 2)(y + 2)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore,
Xty =x'+y+'=+y+)x' +y+2)
xtz=xtzty =(x+y+)(x+y +2)
ytz=ytz+axx'=(x+y+2)(x' +y+2)

Combining all the terms and removing those which appear more than once, we finally obtain
F=e{x+y+z2)x+y +2)(x +y+2)(x' +y+2')

= MoM>MMs
A convenient way to express this function is as follows:
F(x,y,z) =I1(0, 2,4, 5)

The product symbol, T, denotes the ANDing of maxterms; the numbers are the maxterms of
the function.

Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of minterms
missing from the original function. This is because the original function is expressed by those
minterms which make the function equal to 1, whereas its complement is a 1 for those minterms
for which the function is a 0. As an example, consider the function

F(A,B,C) = 2(1,4,5,6,7)
This function has a complement that can be expressed as

F'(A,B,C) = 2(0,2,3) = mg + my + ms
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Now, if we take the complement of £ by DeMorgan's theorem, we obtain Fin a different form:
F = (mg+ my + m3) = mymyms = MoM_My = T1(0, 2, 3)

The last conversion follows from the definition of minterms and maxterms as shown in Table 2.3.
From the table, it is clear that the following relation holds:

m} = Mj
That is, the maxterm with subscript f is a complement of the minterm with the same subscript
J and vice versa.

The last example demonstrates the conversion between a function expressed in sum-of-
minterms form and its equivalent in product-of-maxterms form. A similar argument will show
that the conversion between the product of maxterms and the sum of minterms is similar. We
now state a general conversion procedure: To convert from one canonical form to another, in-
terchange the symbols X and IT and list those numbers missing from the original form. In
order to find the missing terms, one must realize that the total number of minterms or maxterms
is 2", where n is the number of binary variables in the function.

A Boolean function can be converied from an algebraic expression 10 a product of max-
terms by means of a truth table and the canonical conversion procedure. Consider, for exam-
ple, the Boolean expression

F=xy+2a'z
First. we derive the truth table of the function, as shown in Table 2.6. The 1's under F in the
table are determined from the combination of the variables for which xy = 11 orxz = 01, The

minterms of the function are read from the truth table to be 1. 3, 6. and 7. The function expressed
as a sum of minterms is

Flx.vz) = 3(1.3.6.7)

Since there is a total of eight minterms or maxterms in a function of three variables. we deter-
mine the missing terms to be 0. 2. 4, and 5. The function expressed as a product of maxterms is

Flx.v,z) = T1(0.2.4. 5)

the same answer as obtained in Example 2.5,

Table 2.6

Truth Table for F = xy + x'z
X Y z F
0 0 0 0
0 0 | 1
0 1 0 0
0 ! 1 1
1 0 0 0
i 0 i 0
I 1 0 |
1 1 1 1
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Standard Forms

otz by

-

11 L

The two canonical forms of Boolean algebra are basic forms that one obtains from reading a
given function from the truth table. These forms are very seldom the ones with the least num-
ber of literals, because each minterm or maxterm must contain, by definition, all the variables,
either complemented or uncomplemented.

Another way to express Boolean functions is in standard form. In this configuration, the
terms that form the function may contain one, two, or any number of literals. There are two types
of standard forms: the sum of products and products of sums.

The sum of products is a Boolean expression containing AND terms, called product terms,
with one or more literals each. The sum denotes the ORing of these terms. An example of a func-
tion expressed as a sum of products is

Fi=y +xy+2'yz

The expression has three product terms, with one, two, and three literals. Their sum is, in ef-
fect, an OR operation.

The logic diagram of a sum-of-products expression consists of a group of AND gates fol-
lowed by a single OR gate. This configuration pattern is shown in Fig. 2.3(a). Each product term
requires an AND gate, except for a term with a single literal. The logic sum is formed with an
OR gate whose inputs are the outputs of the AND gates and the single literal. It is assumed that
the input variables are directly available in their complements, so inverters are not included in
the diagram. This circuit configuration is referred to as a two-level implementation.

A product of sums is a Boolean expression containing OR terms, called sum rerms. Each term
may have any number of literals. The producr denotes the ANDing of these terms. An exam-
ple of a function expressed as a product of sums is

B=x(y +z)(x" +y+2)

This expression has three sum terms, with one, two, and three literals. The product is an AND
operation. The use of the words product and sum stems from the similarity of the AND oper-
ation to the arithmetic product (multiplication) and the similarity of the OR operation to the arith-
metic sum (addition). The gate structure of the product-of-sums expression consists of a group
of OR gates for the sum terms (except for a single literal), followed by an AND gate, as shown
in Fig. 2.3(b). This standard type of expression results in a two-level gating structure.

Fy

F

Lot T

(a) Sum of Products (b) Product of Sums

FIGURE 2.3
Two-level implementation
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(a)AB + C(D + E) (b)AB+ CD + CE

FIGURE 2.4
Three- and two-level implementation

A Boolean function may be expressed in a nonstandard form. For example, the function
Fs=AB+C(D + E)

1s neither in sum-of-products nor in product-of-sums form, The implementation of this ex-
pression is shown in Fig, 2.4(a) and requires two AND gates and two OR gates. There are three
levels of gating in this circuit. It can be changed to a standard form by using the distributive
law to remove the parentheses:

F;=AB+ C(D + E) = AB + CD + CE

The sum-of-products expression is implemented in Fig. 2.4(b). In general. a tiwo-level imple-
mentation is preferred because it produces the least amount of delay through the gates when
the signal propagates from the inputs to the output. However, the number of inputs 1o a given
gate might not be practical.

2.7 OTHER LOGIC OPERATIONS

When the binary operators AND and OR are placed between two variables, x and v, they form
two Boolean functions, x+y and x + v. respectively. Previously we stated that there are 2o
functions for n binary variables. Thus, for two variables, n = 2, and the number of possible
Boolean functions is 16. Therefore, the AND and OR functions are only 2 of a total of 16 pos-
sible functions formed with two binary vanables. It would be instructive to find the other 14
functions and investigate their propertics.

The truth tables for the 16 functions formed with two binary variables are listed in Table 2.7.
Each of the 16 columns, £ to F|s. represents a truth table of one possible function for the two
variables, x and y. Note that the functions are determined from the 16 binary combinations that
can be assigned to F. The 16 functions can be expressed algebraically by means of Boolean func-
tions, as is shown in the first column of Table 2.8, The Boolean expressions listed are simpli-
fied 1o their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND, OR, and
NOT, there is no reason one cannot assign special operator symbols for expressing the other func-
tions. Such operator symbols are listed in the second column of Table 2.8. However, of all the new
symbols shown. only the exclusive-OR symbol. & , is in common use by digital designers.
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Table 2.7
Truth Tables for the 16 Functions of Two Binary Variables

x vy |k R b 5 kg Fs F¢ F; Fg F Fo Fy Fiz Fyz Fi4 Fis

0 0 6o o o 0 0o 0 00 1 1 1 1 1 1 1 1

0 1 g o0 % 1 ¥ 1 @ ®» e X 3 11

1 0 g o @ T @9 ¥ 1.@¢ O L I @ 0 1 1

I | o 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables
Operator
Boolean Functions Symbol Name Comments

Fp=0 Null Binary constant 0
F = xy x-y AND Xxandy
F =y Xy Inhibition X, but not ¥
B=x Transfer X
Fy=x'"y AVAS Inhibition ¥, but not x
F=y% Transfer y
Fo=xy +x'y x®y Exclusive-OR x or Y, but not both
FR=x+y x+y OR xory
Fg=(x+y) x|y NOR Not-OR
Fy=xy+x'y (x®y) Equivalence Xxequals y
Fig =)' ¥ Complement Not y
Fio=x+y xCy Implication If y, then x
Fi; =x' x' Complement Not x
Fia=x"+y xDy Implication If x, then y
Fyy = (J}‘)' X T y NAND Not-AND
Fs=1 Identity Binary constant 1

Each of the functions in Table 2.8 is listed with an accompanying name and a comment that
explains the function in some way. The 16 functions listed can be subdivided into three categories:

1. Two functions that produce a constant 0 or 1.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND, OR,
NAND, NOR, exclusive-OR, equivalence, inhibition, and implication.

Constants for binary functions can be equal to only 1 or 0. The complement function pro-
duces the complement of each of the binary variables. A function that is equal to an input vari-
able has been given the name transfer, because the variable x or y is transferred through the gate
that forms the function without changing its value. Of the eight binary operators, two (inhibi-
tion and implication) are used by logicians, but are seldom used in computer logic. The AND
and OR operators have been mentioned in conjunction with Boolean algebra. The other four
functions are used extensively in the design of digital systems.
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The NOR function is the complement of the OR function, and its name is an abbreviation
of not-OR. Similarly, NAND is the complement of AND and is an abbreviation of not-AND.
The exclusive-OR, abbreviated XOR. is similar to OR, but excludes the combination of both
xand y being equal to 1: it holds only when x and y differ in value. (It is sometimes referred
10 as the binary difference operator.) Equivalence is a function that is 1 when the two binary
variables are equal (i.e.. when both are 0 or both are 1). The exclusive-OR and equivalence func-
tions are the complements of each other. This can be easily verified by inspecting Table 2.7:
The truth table for exclusive-OR is Fg and for equivalence is Fo, and these two functions are
the complements of each other. For this reason. the equivalence function is called exclusive-
NOR, abbreviated XNOR,

Boolean algebra, as defined in Section 2.2, has two binary operators, which we have called
AND and OR. and a unary operator, NOT (complement). From the definitions, we have deduced
a number of properties of these operators and now have defined other binary operators in terms
of them, There is nothing unique about this procedure. We could have just as well started with
the operator NOR ( | ), for example, and later defined AND, OR, and NOT in terms of it. There
are. nevertheless, good reasons for introducing Boolean algebra in the way it has been intro-
duced. The concepts of “and,” “or,” and “not” are familiar and are used by people to express
everyday logical ideas. Moreover, the Huntington postulates reflect the dual nature of the al-
gebra, emphasizing the symmetry of + and - with respect 1o each other.

2.8 DIGITAL LOGIC GATES

Since Boolean functions are expressed in terms of AND, OR. and NOT operations, it is easier
to implement a Boolean function with these type of gates. Still, the possibility of constructing
gates for the other logic operations is of practical interest. Factors to be weighed in consider-
ing the construction of other types of logic gates are (1) the feasibility and economy of producing
the gate with physical components. (2) the possibility of extending the gate to more than two
inputs. (3) the basic properties of the binary operator. such as commutativity and associativi-
ty, and (4) the ability of the gate to implement Boolean functions alone or in conjunction with
other gates.

Of the 16 functions defined in Table 2.8, two are equal to a constant and four are repeated.
There are only 10 functions left to be considered as candidates for logic gates. Two—inhibi-
tion and implication—are not commutative or associative and thus are impractical to use as stan-
dard logic gates. The other eight—complement, transfer, AND, OR, NAND, NOR,
exclusive-OR. and equivalence—are used as standard gates in digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig, 2.5, Each gate has
one or two binary input variables, designated by x and v, and one binary output variable, des-
ignated by F. The AND, OR, and inverter circuits were defined in Fig. 1.6. The inverter cir-
cuit inverts the logic sense of a binary variable, producing the NOT, or complement, function.
The small circle in the output of the graphic symbol of an inverter (referred to as a bubble) des-
ignates the logic complement. The triangle symbol by itself designates a buffer circuit. A buffer
produces the transfer function, but does not produce a logic operation, since the binary value
of the output is equal to the binary value of the input. This circuit is used for power amplifi-
cation of the signal and is equivalent to two inverters connected in cascade.
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Graphic Algebraic Truth
Reidi symbol function table
r y| F
x 7 7 -'.; - 0 0| 0
o e E
I 1] 1%
x yl F
OR ¥ = 4 B
y __,l‘ 7, E F=x+ ¥ 0 1 1
1 0] 1
1 1] I
[ F
Inverter F=x' ?_1
11 ©
xi F
Buffer F=x o o
1 1
x oy F
NAND F= (o) 0 1| 1
1 0] 1
1 1] @
x ¥
r: Pe(x+y) 9
1 o o0
1 1] 0
¥ y] F
Exclusive-OR F=xy' +xy 0 of o
(XOR) =x8y e 1
I D] 1
1 1] B
x y| F
Exclusive-NOR F=xy+xy 0 o -T
or = §
equivalence o ? l!) g
I ‘1] 1
FIGURE 2.5

Digital logic gates
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The NAND function is the complement of the AND function. as indicated by a graphic
symbol that consists of an AND graphic symbol followed by a small circle. The NOR function
is the complement of the OR function and uses an OR graphic symbol followed by a small cir-
cle. NAND and NOR gates are used extensively as standard logic gates and are in fact far more
popular than the AND and OR gates. This is because NAND and NOR gates are easily con-
structed with transistor circuits and because digital circuits can be easily implemented with
them.

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except for
the additional curved line on the input side. The equivalence. or exclusive-NOR, gate is the
complement of the exclusive-OR, as indicated by the small circle on the output side of the
graphic symbol.

Extension to Multiple Inputs

The gates shown in Fig. 2.5—except for the inverter and buffer—can be extended to have
more than two inputs, A gate can be extended to have multiple inputs if the binary operation it
represents is commutative and associative. The AND and OR operations, defined in Boolean
algebra, possess these two properties. For the OR function, we have

X+ y=y+tx (commutative)
and
(x+¥)+z=x+(y+2)=x+y+: (associative)

which indicates that the gate inputs can be interchanged and that the OR function can be ex-
tended to three or more variables.

The NAND and NOR functions are commutative, and their gates can be extended to have more
than two inputs, provided that the definition of the operation is modified slightly. The difficulty is
that the NAND and NOR operators are not associative (ie. (x | ¥) | = # x | (v | 2)). as shown
in Fig. 2.6 and the following equations:

(U ba=la+y) +al' = (x40 =52 + e
dlla =+ (y+ T =x(r+2) = ¥y + 22
To overcome this difficulty, we define the multiple NOR (or NAND) gate as a complemented
OR (or AND) gate. Thus, by definition, we have
xlylz=(x+y+3z)
xtytz=(xvz)
The graphic symbols for the three-input gates are shown in Fig. 2.7. In writing cascaded NOR
and NAND operations. one must use the correct parentheses to signify the proper sequence of

the gates. To demonstrate this principle, consider the circuit of Fig, 2.7(c). The Boolean func-
tion for the circuit must be written as

F = [(ABC)'(DE)'Y = ABC + DE
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xr—3
¥— :

(xdiy)dz=(x+y2z

lyl)=x(+2)

FIGURE 2.6
Demonstrating the nonassociativity of the NOR operator: (x | y) |z # x| (v | 2)

(x+y+2)

(xyz)'

{a) 3-input NOR gate {b) 3-input NAND gate

A —
B —
C —

—
o

F=[(ABC)' - (DE)'] = ABC + DE

(c) Cascaded NAND gates

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gates

The second expression is obtained from one of DeMorgan's theorems. It also shows that an ex-
pression in sum-of-products form can be implemented with NAND gates. (NAND and NOR
gates are discussed further in Section 3.7.)

The exclusive-OR and equivalence gates are both commutative and associative and can be
extended to more than two inputs. However, multiple-input exclusive-OR gates are uncommon
from the hardware standpoint. In fact, even a two-input function is usually constructed with other
types of gates. Moreover, the definition of the function must be modified when extended to more
than two variables, Exclusive-OR is an odd function (i.e., it is equal to 1 if the input variables
have an odd number of 1's). The construction of a three-input exclusive-OR function is shown
in Fig. 2.8. This function is normally implemented by cascading two-input gates, as shown in
(a). Graphically, it can be represented with a single three-input gate, as shown in (b). The truth
table in (c) clearly indicates that the output F is equal to | if only one input is equal to | or if
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x ¥ z &
."
0o 0o 0 0
% F=x Q_I' 9z 0 0 1 1
- g 1 Wb
(a) Using 2-input gates 0o 1 1 0
1 0 0 1
1 0 1 0
" 1 1 0 0
{ﬂ>—ruxme: A |
¥ (c) Truth table

(b) 3-input gate
FIGURE 2.8
Three-input exclusive-OR gate

all three inputs are equal to | (i.e., when the total number of 1's in the input variables is odd).
(Exclusive-OR gates are discussed further in Section 3.9.)

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except during
transition. One signal value represents logic | and the other logic 0. Since two signal values
are assigned to two logic values, there exist two different assignments of signal level to logic
value, as shown in Fig. 2.9. The higher signal level is designated by H and the lower signal
level by L. Choosing the high-level H to represent logic | defines a positive logic system.
Choosing the low-level L to represent logic | defines a negative logic system. The terms posi-
tive and negative are somewhat misleading. since both signals may be positive or both may
be negative. It is not the actual values of the signals that determine the type of logic. but rather
the assignment of logic values to the relative amplitudes of the two signal levels.

Hardware digital gates are defined in terms of signal values such as H and L. It is up to
the user to decide on a positive or negative logic polarity. Consider, for example, the elec-
tronic gate shown in Fig. 2.10(b). The truth table for this gate is listed in Fig. 2.10(a). It
specifies the physical behavior of the gate when H is 3 volts and L is 0 volts. The truth table
of Fig. 2.10{(c) assumes a positive logic assignment, with # = 1 and L = 0. This truth table
is the same as the one for the AND operation. The graphic symbol for a positive logic AND
gate is shown in Fig. 2.10(d).

Logic Signal Logic Signal
value value value value
1 — H 0 e
0 ! A 1 L
(a) Positive logic (b) Negative logic
FIGURE 2.9

Signal assignment and logic polarity
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x ¥y z
L L L x
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(a) Truth table (b) Gate block diagram
with Hand L
x Yy z
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0o 1 0
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2 [ 1
{c) Truth table for (d) Positive logic AND gate
positive logic
x ¥ z
5 [ 1
1 0 1 -
0 1 |1 - ¢
0 o i} y —Dp
(e) Truth table for (f) Negative logic OR gate

negative logic

FIGURE 2.10
Demonstration of positive and negative logic

Now consider the negative logic assignment for the same physical gate with L = land H = 0.
The result is the truth table of Fig. 2.10(e). This table represents the OR operation, even though
the entries are reversed. The graphic symbol for the negative-logic OR gate is shown in Fig.
2.10(f). The small triangles in the inputs and output designate a polarity indicator, the presence
of which along a terminal signifies that negative logic is assumed for the signal, Thus, the same
physical gate can operate either as a positive-logic AND gate or as a negative-logic OR gate.

The conversion from positive logic to negative logic and vice versa is essentially an oper-
ation that changes 1's to 0's and 0's to 1's in both the inputs and the output of a gate. Since this
operation produces the dual of a function, the change of all terminals from one polarity to the
other results in taking the dual of the function. The upshot is that all AND operations are con-
verted to OR operations (or graphic symbols) and vice versa. In addition, one must not forget
to include the polarity-indicator triangle in the graphic symbols when negative logic is as-
sumed. In this book, we will not use negative logic gates and will assume that all gates oper-
ate with a positive logic assignment,
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2.9 INTEGRATED CIRCUITS

An integrated circuit (abbreviated IC) is a silicon semiconductor crystal, called a chip, containing
the electronic components for constructing digital gates. The various gates are interconnected
inside the chip to form the required circuit. The chip is mounted in a ceramic or plastic con-
tainer, and connections are welded to external pins to form the integrated circuit. The number
of pins may range from 14 on a small IC package to several thousand on a larger package.
Each IC has a numeric designation printed on the surface of the package for identification,
Vendors provide data books, catalogs, and Internet websites that contain descriptions and in-
formation about the ICs that they manufacture.

Levels of Integration

Digital ICs are often categorized according to the complexity of their circuits, as measured by
the number of logic gates in a single package. The differentiation between those chips which
have a few internal gates and those having hundreds of thousands of gates is made by cus-
tomary reference to a package as being either a small-, medium-, large-, or very large-scale in-
tegration device.

Small-scale integration (S81) devices contain several independent gates in a single pack-
age. The inputs and outputs of the gates are connected directly to the pins in the package. The
number of gates is usually fewer than 10 and is limited by the number of pins available in
the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to 1,000
gates in a single package. They usually perform specific elementary digital operations. MSI dig-
ital functions are introduced in Chapter 4 as decoders, adders, and multiplexers and in Chapter
6 as registers and counters.

Large-scale integration (LSI) devices contain thousands of gates in a single package. They
include digital systems such as processors, memory chips. and programmable logic devices.
Some LSI components are presented in Chapter 7.

Very large-scale integration (VLLSI) devices contain hundred of thousands of gates within
a single package. Examples are large memory arrays and complex microcomputer chips. Be-
cause of their small size and low cost. VLSI devices have revolutionized the computer system
design technology, giving the designer the capability to create structures that were previously
uneconomical to build.

Digital Logic Families

Digital integrated circuits are classified not only by their complexity or logical operation, but
also by the specific circuit technology to which they belong. The circuit technology is referred
1o as a digital logic familv, Each logic family has its own basic electronic circuit upon which
more complex digital circuits and components are developed, The basic circuit in each tech-
nology is a NAND, NOR, or inverter gate. The electronic components employed in the con-
struction of the basic circuit are usually used to name the technology. Many different logic
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families of digital integrated circuits have been introduced commercially. The following are the
most popular:

TTL transistor—transistor logic;

ECL emitter-coupled logic;

MOS metal-oxide semiconductor;

CMOS complementary metal-oxide semiconductor.

TTL is a logic family that has been in use for a long time and is considered to be standard.
ECL has an advantage in systems requiring high-speed operation. MOS is suitable for circuits
that need high component density, and CMOS is preferable in systems requiring low power con-
sumption, such as digital cameras and other handheld portable devices. Low power consump-
tion is essential for VLSI design; therefore, CMOS has become the dominant logic family,
while TTL and ECL are declining in use. The basic electronic digital gate circuit in each logic
family is analyzed in Chapter 10. The most important parameters that are evaluated and com-
pared are discussed in Section 10.2 and are listed here for reference:

Fan-out specifies the number of standard loads that the output of a typical gate can drive
without impairing its normal operation. A standard load is usually defined as the amount of cur-
rent needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.

Power dissipation is the power consumed by the gate that must be available from the power
supply.

Propagation delay is the average transition delay time for a signal to propagate from input
to output. For example, if the input of an inverter switches from 0 to 1, the output will switch
from 1 to 0, but after a time determined by the propagation delay of the device. The operating
speed is inversely proportional to the propagation delay.

Noise margin is the maximum external noise voltage added to an input signal that does not
cause an undesirable change in the circuit output,

Computer-Aided Design

Integrated circuits having submicron geometric features are manufactured by optically pro-
jecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coated with a
photoresistive material that either hardens or softens when exposed to light. Removing extra-
neous photoresist leaves patterns of exposed silicon. The exposed regions are then implanted with
dopant atoms to create a semiconductor material having the electrical properties of transistors
and the logical properties of gates. The design process translates a functional specification or
description of the circuit (i.e., what it must do) into a physical specification or description (how
it must be implemented in silicon),

The design of digital systems with VLSI circuits containing millions of transistors and
gates is an enormous and formidable task. Systems of this complexity are usually impossi-
ble to develop and verify without the assistance of computer-aided design (CAD) tools,
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which consist of software programs that support computer-based representations of circuits
and aid in the development of digital hardware by automating the design process. Elec-
tronic design automation (EDA) covers all phases of the design of integrated circuits. A
typical design flow for creating VLSI circuits consists of a sequence of steps beginning
with design entry (e.g.. entering a schematic) and culminating with the generation of the data-
base that contains the photomask used to fabricate the IC. There are a variety of options
available for creating the physical realization of a digital circuit in silicon. The designer can
choose between an application-specific integrated circuit (ASIC). a field-programmable
gate array (FPGA), a programmable logic device (PLD), and a full-custom IC. With each
of these devices comes a set of CAD tools that provide the necessary software to facilitate
the hardware fabrication of the unit. Each of these technologies has a market niche deter-
mined by the size of the market and the unit cost of the devices that are required to imple-
ment a design.

Some CAD systems include an editing program for creating and modifying schematic dia-
grams on a computer screen, This process is called schematic capture or schematic entry. With
the aid of menus, keyboard commands, and a mouse, a schematic editor can draw circuit dia-
grams of digital circuits on the computer screen. Components can be placed on the screen from
a list in an internal library and can then be connected with lines that represent wires, The
schematic entry software creates and manages a database containing the information produced
with the schematic, Primitive gates and functional blocks have associated models that allow the
functionality (i.e., logical behavior) and timing of the circuit to be verified. Verification is per-
formed by applying inputs to the circuit and using a logic simulator to determine and display
the outputs in text or waveform format.

An important development in the design of digital systems is the use of a hardware de-
scription language (HDL). Such a language resembles a computer programming language,
but is specifically oriented 1o describing digital hardware. It represents logic diagrams and other
digital information in textual form to describe the functionality and structure of a circuit.
Moreover, the HDL description of a circuit’s functionality can be abstract, without reference
1o specific hardware, thereby freeing a designer to devote attention to higher level functional
detail (e.g.. under certain conditions the circuit must detect a particular pattern of 1's and 0's
in a serial bit stream of data) rather than transistor-level detail. HDL-based models of a cir-
cuit or system are simulated 1o check and verify its functionality before it is submitted to fab-
rication, thereby reducing the risk and waste of manufacturing a circuit that fails to operate
correctly. In tandem with the emergence of HDL-based design languages, tools have been
developed to automatically and optimally synthesize the logic described by an HDL model of
a circuit. These two advances in technology have led to an almost total reliance by industry
on HDL-based synthesis tools and methodologies for the design of the circuits of complex de-
gital systems. Two hardware description languages—Verilog and VHDL—have been ap-
proved as standards by the Institute of Electronics and Electrical Engineers (IEEE) and are in
use by design teams worldwide. The Verilog HDL is introduced in Section 3.10, and because
of its importance, we include several exercises and design problems based on Verilog through-
out the book.
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PROBLEMS

Boolean Algebra and Logic Gates

Answers to problems marked with * appear at the end of the book.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2,10

2.1

212

Demonstrate the validity of the following identities by means of truth tables:

(a) DeMorgan's theorem for three variables: (x + y + z)' = x'y'z"and (xyz)' = x" +y' + 2
(b) The distributive law: x + yz = (x + ¥)(x + 2)

(c) The distributive law; x(y + z) = xy + x2

(d) The associativelaw: x + (y +2) = (x + y¥) + 2

(e) The associative law and x(yz) = (xv)z

Simplify the following Boolean expressions to @ minimum number of literals:

(@* xy + xy' ®)* (x + y)(x + ')

(c)* xyvz + x'y + xyg' (d* (A + B) (A" + B')
(&) xyz' + x'yz + xyz + x'yz' ® (x+y+)x' +y +2)
Simplify the following Boolean expressions to & minimum number of literals:
(2)* ABC + A'B + ABC' (b)* x'yz + xz

@)F (x + y)'(x’ +5') (d)* xy + x(wz + wz')
(e)* (BC' + A'D)(AB' + CD') ) (x+y +2')x" +2')
Reduce the following Boolean expressions to the indicated number of literals:
(ay* A'C" + ABC + AC’ to three literals

m* (x'y' +2) +z+xv+wz to three literals

(c)* A'B(D' + C'D) + B(A + A'CD) to one literal

(@ (A" + C)(A"+C')(A+ B+ C'D) to four literals

(e) ABCD + A'BD + ABC'D to two literals

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.2.

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.3,

Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.4.

Find the complement of F' = wx -+ yz; then show that FF' = 0and F + F' = 1.

Find the complement of the following expressions:
(a)* xy' + x'y (b) (A'B+CD)E' + E
(€) (' +y+z20(x+ y)(x+2)

Given the Boolean functions | and F', show that

(a) The Boolean function £ = Fy + Fj contains the sum of the minterms of F, and F.

(b) The Boolean function G = FF, contains only the minterms that are common to F,
and F.

List the truth table of the function:

(ay* F=xy+ xy' +¥'z (b) F=x'z" +yz

We can perform logical operations on strings of bits by considering each pair of corresponding
bits separately (called bitwise operation). Given two eight-bit strings A = 10110001 and
B = 10101100, evaluate the eight-bit result after the following logical operations: (a)* AND,
(b) OR, (c)* XOR, (d)* NOT A, (e) NOT B.
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2.13 Draw logic diagrams to implement the following Boolean expressions:
(@ Y=A+B+B(A+C)
(b) ¥ = A(B® D) + C'
() Y =4+ CD + ABC
d ¥=(A®C) +8
(&) ¥ =(A"+B')(C+D)
(fy ¥=1[(A+B)(C + D)
2.14 Implement the Boolean function
F=xy+ xy'+yz

(a) with AND, OR, and inverter gates,
(by* with OR and inverter gates,

(c) with AND and inverter gales,

(d) with NAND and inverter gates, and
(e) with NOR and inverter gates.

2.15* Simplify the following Boolean functions 7' and 7’3 to a minimum number of literals:

A B C T T
0 0 0 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 | 0 0 1
1 1 1 0 1

2.16 The logical sum of all minterms of a Boolean function of n variables is 1.
(a) Prove the previous statement for n = 3.
(b) Suggest a procedure for a general proof.

2.17  Obtain the truth table of the following functions. and express each function in sum-of-minterms
and product-of-maxterms form:
(ay* (xy + 2)(y + az) by (x+ ¥y +2)
(€) x'z+wx'y + wya' +w'y' (dy {x» + 32"+ 2'2)(x +2)
2.18 For the Boolean function
F=xy'z+x'yz+way+ wa'y + way

(a) Obtain the truth table of F.

(b) Draw the logic diagram. using the original Boolean expression.

(c)* Use Boolean algebra to simplify the function to a minimum number of literals,

(d) Obrain the truth table of the function from the simplified expression and show that it is the
same as the one in part (a),

(¢) Draw the logic diagram from the simplified expression, and compare the total number of
gates with the diagram of part (b).
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2.19% Express the following function as a sum of minterms and as a product of maxterms:
F(A,B,C,D)=B'D+ A'D + BD

2.20 Express the complement of the following functions in sum-of-minterms form:

(@) F(A,B,C,D) = £(3,5,9,11,15) (b) Fx,y,z)=11(2,4,57)
2.21 Convert each of the following to the other canonical form:
(@) F(x,y.z) = 2(2,5,6) ' (b) F(A,B,C,D)=1T1(0,1.2,4,7,9,12)
2.22% Convert each of the following expressions into sum of products and product of sums:
(a) (AB + C)(B + C'D) (®) x' +x(x+y)(y+2')
2.23 Draw the logic diagram corresponding to the following Boolean expressions without simplifying
them:
(a) BC' + AB + ACD (b) (A+ B)(C+ DA+ B+ D)
(c) (AB + A'B')(CD' + C'D) (d A+CD+ (A+ D')(C'+ D)

2.24 Show that the dual of the exclusive-OR is equal to its complement.

2.25 By substituting the Boolean expression equivalent of the binary operations as defined in Table 2.8,
show the following:
(a) The inhibition operation is neither commutative nor associative,
(b) The exclusive-OR operation is commutative and associative.

2.26 Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

2.27 Write the Boolean equations and draw the logic diagram of the circuit whose outputs are defined

by the following truth table:
fy f; a b c
1 0 0 0 0
0 0 0 0 1
0 1 0 1 0
1 1 0 1 1
0 1 1 0 0
0 1 1 0 1
1 1 1 1 0
1 0 1 1 1

2.28 Write Boolean expressions and construct the truth tables describing the outputs of the circuits
described by the following logic diagrams:

a b Dc (il
b

(a) (b)
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