
Chapter 2

Boolean Algebra and Logic Gates

2 .1 I N T RO D U CTI O N

Because binary logic is used in all of toda y's digital computers and devices. the cost of the
circuits that implement it is an important factor addressed by designers. Finding simpler and
cheaper. but equivale nt. realizations of a circuit can reap huge payoffs in reducing the over­
all cost of the design. Mathematical methods that simplify circuits rely primari ly on Boolean
alge bra . Therefore , this chapter provides a basic vocabulary and a brief founda tion in
Boolean algebra that will enable you 10 optimize simple circuits and 10 understand the pur­
pose of algorithms used by software tools to optimize complex circuits involving mill ions
of logic gates .

2.2 BASIC DEFINITIONS

Boolean algebra. like any other deductive mathematica l system. may bedefined with a SCi of
elements. a set of operators. and a number of unproved axioms or postulates. A set of elements
is any collection of object s. usually having a common property. If S is a set, and x and y are cer­
tain objec ts. then x E 5 means that x is a member of the set 5 and y Ii!: 5 means thai }' is not an
element of 5. A set with a denumerable number of elements is specified by braces:
A = {I, 2. 3. 4 } indicates that the elements of set A are the numbers 1, 2, 3, and 4. A binary
operator defined on a set 5 of elements is a rule that assigns, to each pair of elements from S,
a unique element from 5. As an example, consider the relation a · b = c. We ~y that .. is a
binary operator ifit specifies a rule for finding c from the pair (a. b) and also if a, b, C E S. How­
ever... is not a binary operator if a. b E 5, if C Ii!: S.

36

Section 2.2 Basic Definitions 37

The postula tes of a mathemat ical ..ysrern form the basic assumpt ions from which it is pos­
sible to deduce the- rules. theorem s. and prope rtie s of the s),..tern . The most common po..tula tes
used to formu late vanou .. alge braic struc tures are as fol low..:

I. Closure, A se t S is closed with re..peer to a binary ope rator if. (or ever)' pair of e lements
of S. the binary o perator specifies a role for ob taini ng OJ. unique element of S. For example.
Ih~ set of natural numberv N = r1.2. J• ..a•••• } i.. closed with re..pee r to the bin ary
operator + by the rule ..of arithmetic addition. since. for any Q. b e N, there is a unique
c E N such that a + b = r, The set of nat ural numbers i.. IWI closed with respect to the
binary o perato r - by the ru les of arithmetic subtraction. because 2 - J = - I and 2.
JeN. bU1 (- I) .N.

2. Associative full' . A binary operato r '" on a "C'I S i.... aid 10 be associative whene ver

(x " y) · .: = x * (y * .:) for ullx. .". : .e S

J. Comnuaattve law. A bina ry opcrator > on a sci S i.. sa id to be commutative wheneve r

x · y = y ·x for all .\', y e S

~ . Idt'ntity element. A set S is said 10 ha ve a n ide ntity element with respect to a binary op­
eration • on S if there exi sts an ele ment r e S with the-propert y that

e· x = x· t':::: x for everyr e S

Example: The ele ment 0 is an identity element with respec t 10 the binary opera tor + on
the set of intege rs 1 • { - 3. - 2. - I. O. I. 2. 3•. .. }...ince

.r + 0 = 0 + .r = .r for anya e r

The ~1 of natural numbers. N. has no Identity ele me nt. ..ince 0 is excl uded from the set .

5. Inve rse , A set S hav ing the identity element t' with respect to a binary operator • is sa id
10 have an Inverse 'A bcncver. for every .r e S. tbere exists an element ye S such that

x"',r = t'

Example: In the set o f integers . I. and the ope rator + . with t.' = O. the inverse of an ele­
rneru a is {r-«}. since n + (- a) = O.

6. Distributive law. If • and • are IWO binary ope-rato rs on a set S• • is sa id 10 bedistrib­
uti vc over • whenever

x "'(Y ' :) = (x"'y) · (x".:)

Afield is an exa mple of an a lgeb raic structure. A field is a set o f ele ments. together with two
binary ope rators. each having propert ies I thro ugh 5 and bo th o perators combining 10 g ive
pro pert y 6. The set of rea l num be rs. together with the binary ope rators + and - . fonns the
field of real numbers. Th e fie ld of rea l numbe rs. Is the ha.\ is for ari thmetic and o rdinary alge­
bra. The operators a nd postula tes ha ve the foll owin g meaning..:

The binary operator + defines add ition .

The add itive identity is O.

38 Chapter 2 Boolean Algebra and logic Gates

The add itive inverse defin es subtraction.

The binary operator • defin es multiplication .

The multiplicative identity is I .

For a * O. the multipli cative inverse of a = Ila defi nes division (i.e.• a ' l l a = I).

The only distributive la..... applicable is that of . over +:

a · (b + c) ~ (a · b) + (a · c)

2 .3 AXIOMATIC DEFINITION
OF BOOLEAN ALGEBRA

In 1854. George 8 00le de veloped an algebra ic system now called Boolean algebra. In 1938.
C. E. Shannon introdu ced a two-valued Boolean algebra called switching algebra that repre­
sented the propert ies of bistabl e electri ca l switching circuits. For the form al definition of
Boolean algebra.e shall employ the postu lates formulated by E. V. Huntington in 1904 .

Bool ean algeb ra is an algebraic structure defined by a set of e lements. B. toget her w ith
t.....o binary ope rato rs. + and - , provided thai the follo ing (Huntington) postulates are
satisfied;

I. (a) The structure is closed w ith respect to the operator +.
(b) The structure is closed w ith respect to the operator - .

2. (a) The element 0 is an identity eleme nt w ith respect to +; thai is. x + 0 = 0 + x = x .
(b) The element I is an identity element w ith respect to -: that is. x · I = I · x = x.

3. (a) The structure is commutative with respect to +: that is. x +)' =)' + .r.
(b) The structure is commutative with respect to - : that is. x ')' =)' . x .

... (a) The operator . is distributi,·eover + : thatis.x · ()' + :) = (x ')') + (x ' ;),
(b) The operator + is distributive over - : that is. x + (y - c} = (x + y) . (x + z).

5. For every element .r e B. there exists an element x' e 8 (cal led the compl~m~nt of x)
such that (a) x + x' :::: I and tbjx - x' :::: O.

6. There exist at least two elements x; y e B such that x :;:.)'.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num ­
bers). we note the following differences:

I. Huntington postulates do not include the associa tive law. However. this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over' (i.e .• .r + (y . z) - (x + y) . (x + z» . is valid fo r
Boo lean algebra. but not for ordinary algebra.

3. Boo lean algebra does not have addi tive or multiplicative inverses: there fore. there are no
subtraction or division operations.

Sect ion 2.3 Axiom at ic Definition of Boolean Algebra 39

.a. Postulate 5 defines an operator ca lled the complement that is not ava ilable in ordi nary
algebra.

S. Ordina ry alge bra deal s with the real numb ers. which constitute an infinite se t of ele­
ments. Boo lean algeb ra dents with the as yet undefined set of clements. B, but in the
two-valued Boolean algeb ra defined next (and of interest in our SUbsequent usc of that
algebra). H is defined as a set with only two elements. 0 and I.

Boolean algebra resembles ordinary algeb ra in some res pects. The cho ice of the
symbols + and , is inte ntio nal. to fac il itate Boo lean algebraic man ipulati on s by persons
already familiar with ordinary algebra . Although one can use some knowledge from ordinary
algebra 10dea l with Boolean algebra. the beg inner must he ca reful not to substitute the rules
of ord inary algebra where they are not applicable.

It is important to d istinguish between the c lements of the set o f an algebraic structure and
the variables of an algebraic system. For example . the clements of the field of rea l numbe rs are
numbe rs. whereas variables such as a , h. c. etc.• used in ordinary algebra. arc symbo ls that
.\'Iandfor rea! numbers. Similarly, in Boolean algebra, one defines the cle ments of the SCi H, and
variables such as .r. j-, and ; are merely sym bols that represent the cle ments. At this point. it is
important to realize that . in order to have a Boolean algebra, one must show thai

1. the clements of the set 8 .

2. the rules of operation for the two binary operators. and

3. the set of elemen ts. B. together with the IWO ope rators. satisfy the six Huntington
postulates.

One ca n formulat e many Boo lean algebras, depending o n the choice of elements of fl and
the ru les of operation. In our subseq uent work , we deal only with a two-valued Boolean alge ­
bra ti.e.• a Boole an algebra with on ly two ele ments}, Two-valued Boole an a lgebra has appli­
cations in set theory (the algebra of classes) and in propo sitional log ic . Our interest here is in
the applica tion of Boo lean algebra to gme-typc circuits.

Two-Valued Boolean Algebra

A two-valued Boolean algeb ra is def ined on a set of two elements. 8 :::: {O, I}. with rules for
the two binary operators + and, as shown in the following ope rator table s (the rule for the
complement operator ls for verification of postulmc 5):

~ x y x + y

lo n o o o n o I
o I o o I I I o
I o o I o I
I I I I I I

40 Chapter 2 Boolean Algebra and logic Gates

These rules are exactly the same as the AND. OR. and NOT operations. respectively. defined
in Table 1.8. We must now show that the Huntington postulates are valid for the set 8 "" {D. I }
and the two binary operators + and ".

1. That the structure is clou d with respect to the two operators is obvious from the tables.
since the result of each operation is either I or 0 and I. 0 E B.

2. From the tables. we see that
(a) 0 + 0 = 0 0 + 1 = I + 0 = I ;
(b») ') = 1 1' 0 =0' 1 = 0.

This establishes the two identi ty elements. 0 for + and I for ' . as defi ned by postu­
late 2.

3. The commutative laws are obvious from the symmetry of the binary operator tables.

4. (a) The distriblltive law x ' (y + z) = (x · y) + (x ' e) can be shown to hold from the
operator tables by forming a truth table of all possible values of .r, y. and z. For each
combination. we derive x · (y + z} and show that the value is the same as the value of
(x 'y) + (x ',),

x y x y + x x o(r + z)

0 0 0 0 0
0 0 I I 0
0 I 0 I 0
0 I I I 0
I 0 0 0 0
I 0 I I I
I I 0 I I
I I) I I

x · y X ' x (x ' r) + (x ' z)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 I I
I 0 I
I I I

(b) The distributive law of + over' can beshown to hold by means of a truth table sim­
ilar to the one in part (a).

5. From the complement table. it is easily shown that
(a) .r + x' = I. since 0 + 0' = 0 + I = I and 1 +) ' = I + 0 = I.
(b) x - x ' = O. since 0 · 0 ' = O' I = 0 and I ' I ' = I ' 0 = O.

Thus, postulate I is verified.

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two elements, I and
O. with I 'F O.

We have j ust established a two-valued Boolean algebra having a set of two elements. I and O.
two binary operators with rules equivalent to the AND and OR operations. and a complement op­
erator equivalent to the NOT operator. Thus, Boolean algebra has been defined in a fonnal math­
ematical manner and has been shown to beequivalent to the binary logic presented heuristically
in Section 1.9. The heuristic presentation is helpful in understanding the application of Boolean
algebra to gate-type circuits. The formal presentation is necessary for developing the theorems

Section 2.4 Basic Theorem s and Properties of Boolean Algebra 41

and propert ies of the algebraic system. The two-valued Boo lean algebra de fined in this section
is also called "switching algebra" by engi neers . To emphasize the similari ties betwee n two-value d
Boo lean algebra and other binary systems , that algebra wa ... culled "'hinary logic" in Section 1.9.
From hen: on . we shall dro p the adjective "two-valued' Ir om Boo lean algebra in subsequent
discuwions.

2 .4 BASIC THEOREMS AND PROPERTIES
OF BOOLEAN ALG EBRA

In Sect ion 2.3. the Hunt ington po...tulutes were listed in pa irs and designat ed by pan (a) and pan
(b l. One pari may he obt a ined from the oth er if the binary operato rs and the ide ntity elements
are interchanged . T his important properly of Boolean algebra is called the duality principle
and slates that every algebraic expre ssion deducible from the postula tes o f Boo lean a lgebra re­
mains valid if the operators and ide ntity elements arc interchanged. In a two-valued Boo lean
algebra. the ide ntity e lements and the clement s o f the se t B are the same: I and O. Th e duality
prin ciple has ma ny npplicatiuns . I f the dual of an algebraic e xpres sion is desired. we simply
interchange OR and AND o perators and replace I 's hy O's and O' s by ls.

Basic Theorems

Table 2.1 lists six theorems o f Boo lean algebra and four of its po..tulates. T he notation is slm­
plifi ed by omitting the binary ope rator whe never do ing so does not lead to confusio n. The the­
orems a nd postul ate s listed are the most basic re lationships in Boo lean alge bra . The theorem s.
like the po stu lmcs , are listed in pairs: each relation is the dual o f the one paired with it. The
pos tula tes arc basic axioms of the algebraic structure and need no proo f. Th e theorems must
be proven from the po..tulares. Proofs o f the theorems with one variab le are presented next .
At the right is listed the number of the postu late which ju..rifl es tha t particu lar step o f the
proof.

Table 2.1
Postulates and Theorems of Boolean Algebra

Postulate 2
Po ..tulare 5
Theorem 1
Theorem 2
Theorem :\. invol ution
Postulate .l , co mmu emve
Theorem a, acsoclauve
Postulate -f. d ictribunve
Theorem 5. DeMorgan
Theorem 6. absorpt ion

(a) .r + 0 '" .r
(a) x + .r" '"

Ca) .1 +.I" .t

(a) .r + I '" I
(x ')' '" .r

(a l .r + Y '")'l
(a l x + (y + .:) '" (.l + r) + :
la) .1(Y + .:) '" .l." + .l :
(a l (x + .1')' '.1'

(a l x + xy '" x

Ib) .I ' 1 - .r
Ib) x·x' '" 0
(b) I "X '= .r

(b) .1"0= 0

(b l .l.'y "')'x
(b) .fer:) '" (x.\'):
(b) .\ ... y: '" (.t + Y)(,l' + z)
(bJ (.1',1')' = \., + \
(b) .1(X + y) = .r

42 Chapter 2 Boolean Algebra and Logic Gates

THEOREM l (a) : x + x = x.

Statement

x+x = (x +x) ' 1

= (x + x)(x + x ')

= x + xx'

= x + O

THEOREM 1(b): x · x = x.

Sta tement

x 'x =xx +O

= xx + xx'

= x(x+ x')

= x · 1

= x

Just ifica tion

postulate 2(b}

5(a)

4(b)

5(b)

2(a)

Justinca tion

postulate 2(a)

5(b)

4(a)

5(a)

' (hI

Note that theore m I(b) is the dual of theorem I(a) and that each step of the proof in pan (b)
is the dual of its counterpart in pan (a). Any dual theorem can be similarly derived from the
proof of its corresponding theorem.

THEOREM 2(a): x + I = I.

Statement

x + I = I · (x + l)
~ (x + x')(x + 1)

= x + x' · l

= x + .e'

= 1

THEOREM 2 (b) : x · 0 = 0 by duality.

J ust inca tlon

postulate 2(b)

5(a)

4(b)

2(b)

5(a)

THEOREM 3 : (x')' = x. From postulate 5. we have x + x ' = I and X" x' "" O. which
together define the complement of .r. The complement of x ' is x and is also (x'}'. Therefore.
since the complement is unique. we have (x ')' = x. The theore ms involving two or three
variables may be proven algebraically from the postulates and the theorems that have
already been proven . Take. for example. the absorpt ion theorem:

Section 2.4 BasicTheo rems and Prope rties of Boolean Algebra 43

THEOREM 6(0) : , + .fYr.

SlJIh,.menl J iWincaUon

.r + .r)' x-I + .ry f'O!'lulate 1lb)

., (1 + ;\,) .,,,

.r (y + 1) 3(.)

"'" .1 '1 2(a)

= • 2(bl

THEOREM 6(b): .r (x y) "" x by duality.

The theore ms of Boole an algebra can be proven by means of truth tables. In truth tables,
both sides of the rela tion are checked to sec whether they yield identical results for all
possible combinations of the variables involved. The following (ruth table verifies the first
absorptio n theorem:

x , 3 x + xy

" 0 0 o
o I n o
I 0 0 I
I I I I

Tbe algebraic proofs of the associa tive law and lXMorgan 's theore m are long and will not
be shown here . However. their validity is easily shown ith truth tables , For example. the IJUth
tab le tor tbe liN Dl:Morgan 's theorem. (.r + yY "" x'y ' . is as follows:

.< , x + , (x , r
o 0 0 1
0 1 I 0
I 0 I 0
I I I 0

Operator Precedence

x '

" x ' , '

) 1 I
I 0 0
0 1 0
() () 0

The operator precedence for evaluating Boolean exp ress ions is (I) parentheses. (2) NOT, (3)
AND. and (~) O R, In other words, expressio ns inside paren theses must be evaluated before
all other operations. The nell. l operation thai holds precedence is the complement. and then fol­
lows the Ar\D and, finally, (he OR. As. an exa mple. consider the truth table for one of De­
Morgan' s theorems. The left "ide of the exp ression is (.f + v}'. Therefore, the express ion
inside the pare ntheses i .. evaluated first and the result then co mplemented. The righl side of

44 Cha pter 2 Boolean Alge bra and logic Gates

the expression is x'y ' , so the complement of x and the complement of y are bothevaluated first
and the result is thenANDed. Note that in ordinary arithmetic, the same precedence holds (excepl
for the complement) when multiplication and addition are replaced by A!'o1) and OR. respectively,

2.5 BOOLEAN FUNCTIONS

Boolean algebra is an alge bra that dea ls with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and
I , and the logic operation symbols. For a give n value o f the binary varia bles, the function ca n
be equ al to either I or 0" As an example, consider the Boo lean function

F] = x + y 'z

The funct ion F] is equal to 1 if x is equal 10 I or if bot h y ' and z are equal to I . F] is equal to
ootherwise. The complement operation dictates thai when y ' = I, Y ... O. Therefore. F I "" I
if x = I or if y =0 andz = I . A Boolean function e xpresses the logical re lationship between
binary variables and is evaluated by determining the binary value of me expression for all pos­
sible value s o f lhe variables.

A Boolean function can be represented in a truth table. The number o f rows in me truth
tab le is 2", where n is thenumber o f variables in the function. The binary combinations for the
truth tab le are obtained from the binary numbers by cou nting from Othroogh 2" - J. Table 2.2
shows the truth table for the function Fl ' There are eig ht possible binary combinatio ns for as­
signing bits 10 the three variables .r, y, and z. The co lumn labeled F) contains either 0 or I for
each o f these com binations. Th e tab le shows that the funct ion is eq ual to I when x = I or
when YZ :>II 0 1 and is eq ual to 0 otherwise.

A Boolean function can be transformed from an algebraic ex press ion into a circuit diagram
composed of logic gates connected in a particular structure. The logic-circuit diagram (a lso
called a schematic) for F) is show n in Fig. 2.1. There is an inverter for input)' to generate its
comple ment . There is an AND gate for the term y' Z and an OR gate that co mbines .r with y ' z.
In logic-ci rcuit diagrams. thevariables of the funct ion are taken as the inputs of the circuit and
the binary variable F1 is taken as the output of the circuit

There is onl y one way that a Boolean function can be repre sented in a truth table . However.
whe n the funct ion is in algebraic fonn. it can be expressed in a variety of ways, all of which

Table 2,2
Truth Tobin for F1 and ' 2

x r x " "
0 0 0 0 0
0 0 I I I
0 I 0 0 0
0 I I 0 I
I 0 0 I I
1 0 1 I I
1 1 0 I 0
1 1 I I 0

Sectio n 2.S Boolean Funct ion s 45

Ffc;.URE 2 .1
Gate impleme-ntallo" of F 1 '" x + ., ':

:~_--i----,D-F'
FIGURE 2.2
Impl em enta t io n of Boo lea n funct ion F1 with gates

have equivalent logic. The particula r expression used [0 represent the function will dictate the
interconnect ion of gates in the logic-ci rcuit d iagra m. Here is a key fact that motivates our usc
of Boole an algebra : By manipulat ing a Boolean ex pression accordi ng to the rule s of Boolean
algebra. it is sometimes possi ble to obtain a simp ler expre ssion fo r the same func tion and thus
red uce the number of gates in the ci rcui t and the number of inputs to the gate . Designers Me'

motivated to reduce the co mplexity and numbe r of gates because the ir effort can significa ntly
redu ce the COSI of a c ircuit. Con sider, fo r exa mple. the following Boolean function:

FZ = x 'y'.:: + .f ' y .:: + .r j -

A scbemanc of an implementa tion of this funct ion with logic gates is shown in Fig. 2.2(a l.

46 Chapter 2 Boolean Algebra and l ogic Gates

Input variables .r and y are complemented with inverters to obtain .e' and y', The three terms
in the expression are implemented with three AND gates. The OR gate forms the logical OR
of the three terms. The truth table for F2 is listed in Table 2.2. The function is equal to I when
.rvz = 001 orOl 1or when xy = 10 (irrespective of the value of z) and is equal to ootherwise.
This set of conditions produces four I' s and four O's for F2•

Now consider the possible simplification of the function by applying some of the identities
of Boolean algebra:

F2 = x' y'Z + x'YZ + xy' = x'z{y' + y) + xy ' = x ' z + xY'

The function is reduced to only two terms and can be imple mented with gates as shown in
Fig. 2.2(b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both imple­
ment the same function. By means of a truth table, it is possible to verify that the two
expressions are equivalent. The simplified expression is equal to I when xz = 01 or when
xy = 10. This produces the same four I 's in the truth table. Since both expressions produce
the same truth table , they are equivalent. Therefore, the IWO circuits have the same outputs
for all possible binary combi nations of inputs of the three variables . Each circuit implements
the same identical function. but the one with fewer gales and fewer inputs 10 gates is prefer­
able because it requires fewer wires and components. In general , there are many equivalent
representations of a logic function.

Algebraic Manipulation

When a Boolean expression is implemented with logic gates, each term requires a gate and each
variable within the term designates an input to the gate. We define a literal to be a single vari­
able within a term, in complemented or uncomplemented form. The function of Fig. 2.2(a) has
three terms and eight literals, and the one in Fig. 2.2(b) has two terms and four literals. By re­
ducing the number of terms, the number of literals, or both in a Boolean expression, it is often
possible to obtain a simpler circuit. The manipulation of Boolean algebra consists mostly of re­
ducing an expression for the purpose of obtaining a simpler circu it. Functions of up to five
variables can be simplified by the map method described in the next chapter. For complex
Boolean functions, designers of digital circuits use computer minimization programs that are
capable of producing optimal circuits with millions of logic gates. The concepts introduced in
this chapter provide the framework for those tools. The only manual method available is a cut­
and-try procedure employing the basic relations and other manipulation techniques that be­
come familiar with use, but remain, nevertheless. subject 10 human error. The examples that
follow illustrate the algebraic manipulation of Boolean algebra.

Simplify the following Boolean functions to a minimum number of literals.

l. x(x' + y) = xx' + .ry = 0 + xy = xy.

2. x + .ry = (x + x ')(x + y) = I(x + y) = x + y,

xy + x ' ;:: + y :: = xy + .r , + y::(x + x')

xy + x ' ;: + xy:: + x·y.:

Section 2.5 Boolean Functions 47

3. (x + y)(x + r') = .r + .rj- + xy' + yy' = x(I + Y + y') = .r.

~ ,

xy(1 + ::) + x' ;:(1 + y)

xy + x ' ::.

5. (x + y)(.t ' + ;::)(y + ::) = (x + y)(x ' + .:). by duality fro m function 4.

•
Functions I and 1 are the dual of each other and l) ~e dual ex press ions in co rres ponding steps.
An easie r way 10 simpli fy functio n 3 is by means of postulate 4(b) fro m Table 2.1:
(x + y)(x + y') = x +)'Y' = .r. The fourth function illustrates the fact that an increase in
the number of literals someti mes leads to a simpler fina l ex pression. Funct ion 5 is nor mini­
mized directly, bUI can be derived from the dual of the steps used 10 deri ve function 4 . Func­
tions 4 and 5 are together known a.~ the CO!lsen.tII,t theorem.

Complement of a Function

The comp lement of a function F is F' and is obtained from an interchange of Il's for l 's and
l 's for O'sin the value of F.The co mplement of a function may be derived algebraica lly through
Dejvlorgan' s theorem s. listed in f ab le 2,1 for IWO variables. Delvlorgan's theo rems ca n be ex­
tended to three or more variables . The three-variable form of the first DeMorgan' s theorem is
derived as follows. from postulates and theorems listed in Table 2.1:

(A + B + C}' = (A + x)'

= A' x '

= A' (R + C) '

= A' (B 'C)

= A'B 'C'

let B + C = x

by theorem 5(a) (DeMorgan)

subst itute B + C = .r

by theorem 5(a) (DeMorgan)

by theorem 4 (b) (assoc iative)

Debtorgan 's theorems for any number of var iab les rese mble the two-var iable case ill form and
ca n bederived by success ive substitutions similar to the method used in the preced ing derive­
tlon. These t~l,)(ems can be generalized as follows:

(A+ B+ C+ D+· " + F)' = A'B'C 'D· . . . F'

(ABe D .. . F)' = A' + B' + C' + D' + .., + F '

The ge neralized fonn of Dej-lorgan' s theorem s states that the complement of a funct ion is
obtained by interchanging AND and OR ope rator!' and co mple menting eac h literal.

48 Chapter 2 Boo lean Algebra and logic Gates

Find the complement of the funct ion s F1 = x 'y ;: ' + x 'y';: and F2 ~ x(y ';:' + yz). By ap­
plying DeMorgan '!io theorems as many times as necessary. the complements art obtained as
follows:

Fj = (x 'yz ' + _,'y'z)' = (x 'yz')'(x'y'z)' = (x + .'" + z)(x + Y + z')

Fi = [x(y ' z' + YZ)J' = x' + (y't + y<:)' = x' + (y' <:')' (yz)'

: x ' + (y + ' Hy' + , ')

=x ' + y z' + y'Z

•
A simpler procedure for deriving the complement of a function is to take the dual of the func­

tion and complement each litera l. This method follows from the genera lized forms of Dej dor­
gan's theorems. Remember that the d ual of a function is obtai ned from the interchange of AND
and OR operators and I's and D's.

Find the complem ent of the functions F. and F2of Example 2.2 by taking their duals and com­
plementing each litera l,

I. F1 = x'yz' + x 'y' z.

The dual o f F. h. (x' + .'1 + z')(x' + y' + z).

Co mplement each literal : (x + y' + z)(x +). + ;:') = Fl.
1. F2 = x (y ' z' + j'z}.

The dual o f F2 is x + (y' + z')(y + z).
Complement each litera l: x' + (y + z)(}" + z') = Fi.

•
2 .6 CANONICAL AND STANDARD FO RM S

Mlnternu and Maxterms

A binary variable may appear either in its normal forrn (x) or in its complement form (x ' }.
Now consider two binary variables x and y combined with an AND ope ration. S ince each vari­
able may appear in either form, there are four poss ible co mbinations: x' y', x'y. xy ' , and x)'.
Each of these four AND term s is called a minterm, or a standard product. In a similar manner.
n variables can be combined to form 2/1 minrerms. The 2" different mintenns may be determi ned
by a method similar to the one shown in Table 2.3 for three variables. Th e binary numbers
from 0 to 2" - I art listed under the 11 variables. Each mintenn is obtained from an AND term
of the n variables. with each variable bein g primed if the corresponding bit of the binary num­
ber is a 0 and unprimed if a I . A symbol for each minterm is also shown in the tab le and is of

Section 2.6 Canonical and Standard Forms 49

Tabl e 2.1
Mint~rms and Max rerms for Three Binary Variab/~s

Mlnterms Milixterms

• y z Term Designation Ter m De signat ion

0 0 0 x'y' : ' /110 .f + ," +: AI,
0 0 I .t'y' : ni l x + }' + c' AI,
0 I 0 X',l':' nl2 x + y' + : M~

0 I I .t'y: m) .r + ,\" + : ' AI,
I 0 0 .1) ':' m, .\., + Y + : 'I,
I 0 I xy'z m, x' + y + c' AI,
I I 0 xyz' m, x'+y'+: AI,
I I I X) ':; m, x' + y' + c' 'I,

Table 2.4
Functions of Three Variab l~s

• y z Functlon'1 Function 12

0 0 0 0 0
0 0 I I 0
0 I 0 0 0
0 I I 0 I
I 0 0 I 0
I 0 I 0 I
I I 0 0 I
I I I I I

the form m j ' where the subscript) denote s the decimal equi valent of the binary numbe r of the
minrerrn des ignated,

In a similar fashion. 11 var iables formin g an OR tern}. with each variable being primed or
unprimed. pro vide 2" po ssible combinations. calle d IIUJxterms. or standard sum.~ , The eight
maxrerms for three variables. together with their symbolic designat ions. are listed in Table 2,3.
An) ' 2" max terms for fI variab les may be de te rmined similarly. It is important to note thai
(I) each maxterm is obtained from an OR term of the 11variables. with each variable being un­
primed if the corresponding bit i.. a 0 and primed if a I. and (2) eac h maxterm is the co mple­
ment of its corresponding mintenn and vice versa.

A Boolean funct ion can be expr essed algeb raically from a given truth table by forming a
minterrn for each combination of the variables that produces a I in the function and then tak­
ing the OR of all those terms. For example. the function I t in Table 2.4 is dete rmined by ex­
pressing the combinations 001. 100. and I I I as .r'y'z. .ev'z'. and X)"z. respectively, Since each
one of these minterms results in 11 = I. we have

I I = .t 'y ' ;: + .tY'Z' + .ty: = ni l + 1114 + 111 7

50 Chapter 2 Boolean Algebra and Logic Gates

Similarly, it may be eas ily verified that

f2 =.ryz + xy' z + xYZ' + xYZ ="'3 + 11/5 + 11I6 + "'1

These examples demonstrate an important property of Boolean algebra: Any Boolean function
can be expressed as a sum of rnlnterms (with "sum" meaning the ORing of tenns).

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a 0 in the function and then ORing
those terms. The complement of / 1 is read as

/i = .t' y' z' + x' yz' + x 'yZ + xy' z + .tyZ'

If we take the complement of Ii. we obta in the function / t:

/1 = (x + y + z)(x +).' + z)(x' + y + z')(x' + y' + a)

= M'O·M'2· M3· Ms· M6

Similarly. it is possible to read the expression for f2 from the table:

h = (x + y + z)(x + y + z')(x + r' + z)(x' + y + z)

= MOMtM2M4

These examples demonstrate a second property of Boolean algebra: Any Boolean function can
be expressed as a produc t of ruaxterrns (with "product" meaning the ANDing of terms). The
procedure for obtaining the product of maxterms directly from the truth table is as follows:
Form a maxterm for each combination of the variables that produces a 0 in the function. and
then form the AND of all those maxterms. Boolean functions expressed as a sum of minrerms
or product of maxterms are said to be in canonical/ ann.

Sum of Mlnterms

Previously. we slated that. for " binary variables. one can obtain 2" distinct minterms and that
any Boolean function can be expressed as a sum of rninterms. The mintenn s whose sum de­
fines the Boolean function are those which give the ls of the function in a truth table. Since
the function can be either 1 or 0 for each minterm. and since there are 2" minterms. one can
ca lculate all the functions that can be formed with n variables [Q be 2211. It is sometimes con­
venient to express a Boolean function in its sum-of-minterms form. If the function is not in this
form. it can bemade so by first expanding the expression into a sum of AND terms. Each term
is then inspected to see if it contains all the variables. If it misses one or more variables. it is
ANDed with an expression such as .r + x', where .r is one of the missing variables. The next
example clarifies this procedure.

Express the Boolean function F = A + R'C as a sum of minrerms. The function has three
variables: A. R. and C.The first term A is missing two variables: therefore.

A ~ A(B + 8 ') = A8 + AB'

Section 2.6 Canonical and Standard forms 51

This function is still missing one variable, so

A = AB(C + C) + AB' (C + C')

= ABC + ABC' + AB'C + AB'C'

The second renn B'C is missing one variable: hence.

B'C = B'C(A + A') = ,I B'C + A' B'C

Combining all terms. we have

F = A + B'C

= ABC + ABC + AB'C + AWe ' + A' B'C

Bur AB'C appears twice. and according 10 theorem I (x -+ .r -- .\'), it is possible 10 remove
one of rho..e occurrences. Rearranging the mintcrms in a..cending order. we finally obtain

F = A' B'C + AH'C + AB'C + ABC' + ABC

•
When a Boolean function is in its sum-ot-minter mstorm. it is sometimes convenient to express
the function in the fo llowing brief notation:

F(A.B. C) - ~ (1.4 .5 . 6 . 7)

The summation symbol ~ stands for the DRing of terms; the numbers following it are the
mintcrms of the function. The letters in parentheses follo wing F form a list of the variables in
the order taken when the minrerm is converted 10 an AND term.

An alternative procedure for deriving the minterms of a Boolean function is to obtain the
truth table of the function directly from the algebraic expression and then read the minrerms
from the truth table. Con..ider the Boolean function given in Example 2A :

F ::$ A + H'C

The truth table shown in Table 2.5 can be derived directly from the algebraic expression by list­
ing the eight binary combinations under variables A. B. and C and inserting ls under F for those

Tab le 2 .S
Truth TobIe for F = A + H'C

A B (f

0 0 0 0
0 0 I I
0 I 0 0
0 I I 0
I 0 0 \
I 0 I I
I I 0 I
I I I I

52 Chapter 2 Boolean Algebra and logic Gates

combinations for which A = I and BC = 01. From the truth table, we can then read the five
mintenns of the function to be 1, 4, 5, 6. and 7.

Product of Maxterms

Each of the 22
/1 functions of n binary variables can bealso expressed as a product of maxterms.

To express a Boolean function as a product of maxterms, it must first be brought into a form
of OR terms . Thi s may be done by using the distributive law, x + yz = (x + y)(x + z) .
Then any missing variable x in each OR term is ORed with xx' . The procedure is clarified in
the following example .

Express the Boolean function F "" xy + x' z as a product of maxterms. First, convert the func­
tion into OR term s by using the distributive law:

F = xy + x 'z = (xy + x')(xy + z)
~ (x + x')(y + x')(x + ,)(y + z)

- (x' + y)(x + ,)(y + a)

The function has three variab les: x. y. and z, Each OR term is missing one variable; therefo re,

x' + y "" x' + y + zz' = (x' + y + z)(x' + y + a')
x + z = x + Z + yy' = (x + y + z)(x + y' + a)
)' + Z "" Y + z + xx ' = (x + y + z)(x' + y + z)

Combining all the terms and removi ng those which appear more than once. we finally obtain

F "" (x + y + z)(x + y' + z)(x' +)' + z)(x' + y + z')

"" MoM2M4Mj

A convenient way to expre ss this function is as follows:

r t». y,a) - nro, 2, 4. 5)

The product symbol, Il , denotes the ANDing of maxterms: the numbers are the maxterms of
the function.

•
Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the sum of minterms
missing from the original function . This is because the original function is expressed by those
minterms which make the function equal to 1, whereas its complement is a I for those mintenns
for which the function is a D. As an example, consider the function

F(A,B , C) ~ ~ (1 ,4 , 5,6.7)

This function has a comp lement that can be expressed as

F' (A , B, C) = I(D, 2. 3) = rno + '"2 + m3

Sect ion 2.6 Canonical and Standard Form s 53

Now. if we take the complement of F' by DeMorgan' 'i,theorem . we ob\ain F in a dif ferent form ;

F = (mo + 1112 + 11/;) ' = I1lU'm 2' /IIj = .\-fnlth "'l.; = n (O.2, J)

The last conversion follo ws from thedefinitionof rninterms and maxterms a" shown in Table 2.3.
From the table . it is d ear tha i the following relation holds:

m) = ,1,,11
That is. the maxtcmt with subscript} is a co mplement of the mi ntenn with the same subsc ript
} and vice versu.

The last exa mple demon strate s the conversion between a function ex pressed in sum -of­
mlnrerms form and its equivale nt in produ ct-of-maxtcrm s form . A similar argument wil l show
tha i the conversio n between the product of maxtc rms and the sum of minterms is similar. We
now state a genera l conve rsion proced ure: To co nvert from one cano nical form to another. in­
terc hange the symbols ! and n and list those num bers missing from the or igi nal form. In
order to find the missing terms. one must realize I llil l the total num ber of mintcrmv or r nuxtcrms
is 2". where " is the number of binary variables in the functi on .

A Boolean funct ion can be conve rted from an algebraic expression to a product of mall­
tcnn.. by means of a truth table and the ca nonica l conversion proc ed ure. Co nside r, for exam­
ple. the Boo lean expression

F = xy + x ' .:

First. we de rive the truth table of the function. as shown in Tahle 2.6. The l 's under F in the
table are determined from the combination of the variab les for which .l ,\' = I I or x ;: = a I .The
minrermsof the function are read from the truth table to he J. 3. 6. and 7. The funct ion expressed
a.. a sum of mintenns i"i

f ·(x. y• c} = ~ (I , J. 6. 7)

Since there is a total of eig ht mililenns o r marterm s in a function of three variables, we deter­
mi ne the missing.terms to be 0.2. 4. and 5. The funct ion expressed as a prod uct of rnaxtcrm s i..

F(x. y. :) = n (O.2. •. 5)

the same answer as obtained in Example 2.5 .

Table 2 .6
Truth Tobie fo r F = xy + IC 'Z

• y z F

0 0 0 0
0 0 I I
0 I 0 0
II I 1 1
I II 0 II, II \ l\
I I l\ I
I I I I

S4 Chapter 2 Boolean Algeb ra and logic Gates

Standard Forms

The two canonical forms of Boolean algebra are basic forms tha i one obt ains from reading: a
given function fro m the truth table . Tbese forms are very se ldom the ones with the leasl num ­
ber of literals. because eac h minterm or maxterm must con tain. by defin ition. all the variables.
either com plemented or uncomplemented.

Another way 10 express Boolean functi ons is in standard form. In this con figuration. the
terms that form the function may contain one . two, or any number of literal s.There are N,O types
of standa rd forms: the sum of products and prod ucts of sums.

The sum of products is a Boolean expression containing AND term s, called product tnms.
with one or more literals eac h. The sum denotes the DRin g of these terms. An exam ple of a func­
tion ex pressed as a sum of products is

FI = Y' + xy + x'yz'

The expression has three product term s. with o ne. two. and three literals. Th eir sum is. in ef­
fee t. an OR operation.

The logic diagram of a sum-of-prod ucts expre ssio n consists of a group of AND gales fol ­
lowed by a singleOR gute. This configuration pattern is shown in Fig. 2.3(a). Each product term
requ ires an AND gate . except for a term with a single literal. The logic sum is formed with an
OR gate whose inputs are the outputs of the AND gates and the single literal. It is assumed that
the input variables are directly available in their complements. so inverters are not included in
the diagram. Thi s circuit configuration is referred to as a two-level implementation,

A product ofSilins is a Boolean expression containing OR terms. called sum tt'n ns. Each term
may have any num ber o f litera ls. The product denotes the ANDing of these terms. An e xam ­
ple of a function expressed as a product of sums is

F, ~ x(y' + ,)(x' + ,. + , 'j

This expression has three sum terms. with one. two. and three literal s. The product is an Al'D
operation. Th e use of the words product and sum stems from the similarity of the AA"D oper­
arionto the arithmetic product (multiplication) and the similarity of the OR opera tion to the arith­
met ic ..urn (addition). The gate structure of the product -of-sums expression con sists of a group
o f OR gates for the sum term s (except for a single literal). followed by anANU gate. as shown
in Fig . 2.3(b). Th is standard type of expression results in a two- level gat ing structure .

,.--~
) .

z - """t-_'

,._ - - - ..,

;'=::[::::)-~==t=: F,,. _ f---

, _-r--,
,

(a) Sum of Products

FIc;UR£ 2.)

Two-level Implementation

., - - --,

(b) Prod uct of Sums

Sect ion 2.7 Other logic Operations SS

la) AB .. Cl D + E)

f iGURE 2 .4
Three- and twc-jevet lmpte mentaucn

A_ ...r- ,
B

~ =:[=)-~=:[::::
c - ...r-,
F.

tto)A B + CD ... CE

F,

A Boolean (unction may he e xpressed in a non standard form . For exa mple. the funct ionf,= AS + C(D + f:)

is nei ther in sum-of-prod ucts nor in product-of-sun» form . The implemen tatio n of this ex ­
pression is shown in Fig . 2.4(a) and requ ires two A:'oJD gates and IWOOR ga tes. There are three
levels of gating in this circuit. II can be c hanged to a standard form by using the distributive
law to remove the paren theses:

F.1 = AS + C(D + £) = AH + CD + CE

The sum-of-prod ucts ex press ion is impl ement ed in Fig. 2Alb l. In gene ral. a two-level imple­
mentation is preferred bec ause it produces the least amount of delay through the gale.. when
the signa l propagates from the inputs to the ou tput. However. the numbe r of input s to a given
ga te might not be pract ica l.

2.7 OTHER LOGIC OPERATIONS

When the binary operators AND and O R are placed betwee n two variables •.\ undv. they form
IWO Boo lean function s. .r "," and .' + .". respectively, Previously we ..rated that there are 2211

functi ons for 11 binary variables. Th us. for IWO variables. II = 2. and the number of possible
Boo lean funct ion.. is 16. Therefore. IheA..'\JD and OR function s an: only 2 of a 101011 o f 16 pus­
sible functions fo rmed with IWObinary variab les. II would be instructive 10 find the other 14
functions and inve stigate thei r prope rties.

The truth tables for the 16 functio ns formed with l WO binary variables are listed in Table 2.7.
Each of the 16 co lumns. ' 010 FI ~ ' represents a truth table of one possib le function for the two
variables, .r and y. Note thai the functions are de ter mined from the 16 binary combinations that
can be as..igned 10F.The 16 functions ca n be expressed algebraica lly by mean s of Boolean func­
lion s. a.. is sho wn in the first co lumn of Table 2.R. The Boolean expressions listed are simpli­
fled to thei r minimum number of literals.

Althou gh each function ca n be e xpressed in terms of the Boo lean ope rators AND. OR. and
f'OT. tbere is no reason onecannota...sign special operat or symbols for expre..... ing theoihc r tunc­
lions. Suchoperator symbols are li..red in the secondco lumn of Table 2.8, However. of all the new
..ym bol-, ..hew n. only the e xclu..ive-O R symbol . ttl, is in co mmon use b)' digital de...igncrs,

56 Chapter 2 Boolean Algebra and logic Gates

Table 2 .7
Truth Tabl~j for the' 6 Functions of Two Binary Variables

• y F, F, F. F. F. F, F. F, F. F, F.. F" Fu F" F,. F"

0 0 0 0 0 0 0 0 0 0 I I I I I I I
0 I 0 0 0 0 I I I I 0 0 0 0 I I I
I 0 0 0 I I 0 0 I I 0 0 I I 0 0 I
I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0

Ta ble 2 .8
Booleon Express/ons for the 76 Functions of Two Variables

Operator
Boolean Functions Symbol Name Comments

Fo '" 0 Null Binary co nstant 0
F[;; .ry X'y AND xand y
F2 '" xy' "" Inhibit ion .r, but not)'
F3 ,. x Tran sfer •
F4 '" x'y }/x Inhibition y, but not x
Fs "")' Transfer y
F/) - xy ' + x ')' xED)' Excl usive-Og, x or) ; bUI nm both
F7 - x + y x +y OR xor J
Fa '" (x + y)' x ! y NO R Not-OR
F9 = X)' + x ')" (x e y)' Equivalence .r equals),
FlO = Y' y' Complement Not)'
F I t == X + s: xC)' Implication If)~ then x
Fl2 - x· x' Complement No..
F I3 - X' +)' x::Jy lmplicanon If x: then)'
Fl ~ "" (A)')' .1"1)' NAND Noc·AND
F1S "" I Identity Binary constant I

Each of the functions in Table 2.8 is listed with an accompanying name and a comment that
explains the function in some way. The 16 functions listed can be subdivided into ihree categories:

I. Two functions that produce a constant aor I.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND. OR.
NAND. NOR. exclusive-OR. equivalence. inhibition. and implication.

Constants for binary functions can be equal to only I or O. The complement function pro­
duces the complement of each of the binary variables. A function that is equa l to an input vari­
able has been given the name transfer. because the variable x or y is transferred through the gate
that forms the function without changing its value. Of the eight binary opera tors. two (inhibi­
tion and implication) are used by logicians. but are seldom used in computer logic. The AND
and OR operators have been mentioned in conjunction with Boolean algebra. The other four
functions are used extensively in the design of digita l systems.

Section 2.8 Digit al logic Gates 57

The NOR function is the co mpleme nt of the OR function. and its name i"i an abbrevia tio n
of Iw t·OR. Sim ilar ly. NAND is the compleme nt of AND and is an abbreviation of /lot -AND .
The exclusive-OR. abbrevia ted XOR. is simila r 10 OR . but exc ludes the combination of both
.r and y bei ng equal to I ; it hold s only whenr and." di ffer in value. (It is somet imes referred
to a, the bin ary difference opera to r.I Equ ivalence is a function tha t is I when the two binary
variables are eq ual Ii.e.• when both are ()or both are I). The exclusive-OR and equivalence func­
tions arc the complements of each other, Thi s can be eas ily verified by inspec ting Table 2.7:
The truth table for exclus ive-OR is F6 and for eq uivale nce is 1-"9 . and these two function s are
the complemen ts of eac h other. For this reason . the eq uivalence function is ca lled ex clusive ­
:"lOR. ab breviated XNOR.

Boo lean algebra. as defin ed in Section 2.2. ha ... two hinary o perators . which we have ca lled
AND and OR. and a unary opera tor, SOT (complcmenn. From the definitions. we huve deduced
a number of prope rties of these operators and now have defined other binary ope rators in tenus
of the m. There i... nothing un ique abo ut thi s procedure . We co uld ha ve j ust as well starte d with
the o perator NOR (l). for ex ample. and later de fined AND . OR. and NOT in terms of it. There
are . nevertheless. 800d reasons for introd uci ng Boo lean algebra in the way it has bee n intro­
duced . The:concep ts of "and." "or:' and "not" are fam iliar and are used by people to express
evcryda y log ical ideas. Moreo ver. the Huntington postulate s refl ect the dual natur e of the a l­
ge bra. em phasizin g the sy mmetry of + and' with respec t 10 cucb other.

2 .8 D IGITAL lOG IC G ATE S

Since Boo lean funct ions arc expresse d in terms of AND. OR . anti NOT operations. it is easier
to imple ment a Boolean function with these type of gates. Still. the possibility of co nstruc ting
gates for the other logic o perations is o f practical interes t. Factors 10 be weighed in conside r­
ing the construction of o ther types of logic gates are (I) the feasibili ty anti ecollomy of producing
the gate with physical co mponen ts. (2) the poss ibility of cxtend ing the gale 10 more tha n two
inputs. (3) the basic prope rties of the binary operator. such as commutativity and associativi­
ty. anti (4) the abil ity of the: gate to implement Boo lean funct ions atone or in co nj unction ith
other ga les.

Of the: 16 funct ions defi ned in Table 2.8. two are equal to a constant and four are:repeated.
The re are only 10 functio ns le ft to be conside red as cand idates for logic gates . Two-c-inhibi ­
tion and implication- are not co mmutative or associative and thus are imp ract ical 10 use as stan­
da rd log ic ga tes. Th e o ther cigb t-c-complemc m. transfe r. AND. OR . NAN D. I\'O R.
excl usive- OR. and eq uivale nce- are used as standard gates in d igita l design .

The graphic sy mbo ls and truth tables of the eig ht gates are sho wn in Fig. 2.5. Each gate has
one o r IWO bi nary input variab les. designated by .r and y. and one binary o utput varia ble. des­
ign ated by F. The AN D. OR . and inverter ci rcuits were defined in Fig . 1.6 . The: invert er ci r­
cuit inve rts the logic sense of a binary variab le. prod ucing the NOT. or co mplement. function.
The sma ll circle in the o utput of the graphic ...ymbol of an inverter (referred to as a bllbble)des­
ign arcs the log ic complement. The triangle symbol by itself designates a buffer cir cuit . A buffer
produces the transfer function. but doe s not produ ce a logic ope ration. since the binary va lue
of the output is equal to the bina ry va lue (11' the: input. Thi s ci rcuit is used for po wer amphfl ­
cat ion of the sig nal and is equivalent to two inve rters co nnec ted in casc ade .

58 Chapter 2 Boolean Algebra and logic Gates

G raphic Algebraic
~arne ')"Dlbol function

Trulh
table

x y F

0 0 0
0 I 0
1 0 0
1 I 1

x y F

OR

Inverter

Buffer

X~F F -x + y
Y~

x-----{)o--- F F - x·

x---t>--F F -x

o 0 0
o 1 1
1 0 1
I 1 1

~:I ~

x y F

:-lAND x l~~ F F .. (xy)' 0 0 1
y ~"$~ . ' 0 1 1

1 0 1
1 1 0

x y F

x~ F .. (x y)' 0 0 INO R ' FY . 0 I 0
I 0 0
I I 0

x y F

Exciush'e·OR x~ F - x,·' + x'y 0 0 0
(XOR) ,,-~. F

- x $ y 0 I IY ~

I 0 I
I I 0

x y F

Exclusive-NO R
x~ F .. xy+x 'y' 0 0 1or ~<,. F - (x ffi y)' 0 1 0equivalence
y .~..,

1 0 0
1 I I

FIGURE 2.5
Dlg ltal log lc gates

Sect ion 2.8 Digit al l og ic Gates 59

The NA ND function is the co mplement of the AN D funct ion. as ind icated by a graphic
symbol that cOl\l;ists of an AN D ~r<lphk symbol fo llowed by a small circle. The r-;OR function
is the complement of the OR funct ion and uses an O R graphi c symbol followed by a small cir­
cle. NAND and NO R gates arc used extensively as standard logic gates and nre in fact far more
pop ular than the AND and OR gates. This is because NAND and NOR gates arc eas ily co n­
struc ted with transistor ci rcuits und because d igita l c ircuit s can he cavily imple mented with
them.

Th e ex clus ive -O R gate has a graphic symbol similar 10 that of me OR gate . except for
the add itional curved line on the input side . The equ ivalence . or exclusive-NOR. gate is the
complement of the exclus ive-Og. as ind icated by the small circle on the o utput side of the
graphic symbo l.

Extension to Multiple Inputs

The gate s show n in Fig . 2.5-except for the inverte r and buffer-s-can he ex tended to ha ve
more tha n two inputs. A gate can he e xte nded 10 have multiple inputs ift he binary operation it
represents is commutative and associa tive. The ASD and O~ ope ratio ns. defined in Boolean
alge bra. possess these two properties. For the OR functio n. we have

x + y = y + .t (c~lmm\ltati ~e)

and

(x + .\.) + c = .r + (y + =) == .r + y + :: (assoc iative)

which indicates that the ga te inputs can re interchanged and that the OR funct ion can beex­
tended 10 three or more var iables.

The NA:"IlD and NOR functions are com mutative . and their gates can be extended to have more
than two inputs. provided that the definition of the operation i ~ modified slightly. The difficulty is
that the NAND and NOR operators arc not associative (i.e.. (x ! y) ! = #- .r 1 (y ! z)). a....huwn
in Fig. 2.6 and the follo wing equations;

Ix j v) I , ~ [Ix + v)' + , I' ~ Ix + y), ' ~

.r I Iy I :) = Ix + (y + c)'!' = x ' ly + c) =

x : + y:'

v'v + x ' ;::

To ove rco me thi s difficulty. we defi ne the multiple NO R (or NAN D) gate as a co mple mented
O R (or AND) ga te. Thus, by de finition. Vieha ve

.r ! y ! t: == (x + y + =)'

of Ty T:. = (xy:.)'

The graphic symbols (or the three -input gates are shown in Fig . 2.7 . In writing ca..ended NO R
anJ NAN D o peratio ns. one must use the correc t parenthese s 10signify the proper seque nce of
the gates. To demon strate this principle. consider the ci rcui t of Fig . 2.7(c). The Boolean func­
lion for the ci rcuit must hewritte n as

F = IIA BC)' (DF.)']' = ABC + DF.

60 Chapter 2 Boolean Alg ebra and logic Gate s

, _J"~_

,--L:::Y--,
, ---,/"!,>)o-- (xJ. y) ! z ,. [r + y)z'

--------fi0~Jt~>· p..--xJ.(y! z) - x'(y + z]

FIGURE 2.6
Demonstrat ing the nonassociativity of the NORoperato r: (x ! y) ! z >F x ! (Y! z}

; ~ (x + y +z)'z .:".,.,

(a) 3-input ~OR gale

D-==
E --\:L=

; I ::~i:~;i~ (x,") 'z :!f!.:?:?F'

(b) 3-input :-;"Al\""O gate

F '" « A BC)' . (D£ IT - ABC + DE

(c) Cascaded :"olA~D gates

FIGURE 2.7
Multiple-input and cascaded NOR and NAND gat es

The second expression is obtained from one of OeMorgan's theorems. It also shows that an ex­
pression in sum-of-products form can be impleme nted with NAN D gates. (NAND and NOR
gates are discussed further in Section 3.7.)

The exclusive-O R and equivalence gates arc both commutative and associative and can be
extended to more than two inputs. However, multiple-input exclusive-OR gates are uncommon
from the hardware standpoint. In fact, even a two-input function is usually constructed with oilier
types of gales. Moreover, the definition of the function must bemodified when extended to more
than two variables. Exclusi ve-OR is an odd function (Le .• it is equal to I if the input variables
have an odd number of I 's). The construct ion of a three-inp ut exclu sive-OR function is shown
in Fig. 2.8. Thi s funct ion is normally implemented by cascadi ng two-inpu t gates, as shown in
(a). Graphically, it can be represented with a single three-input gate, as shown in (b). The truth
table in (c) clearly indicates that the outpu t F is equal to I if only one input is equal to I or if

Section 2.8 Digital l og ic Gates 6 1

:=D-----1
:~F-X$y e:

(al U~ing 2.inpul ga lC:~

{~F. "t $ Y E9 :
(b) y-ln pur gate

, n-o 0 0
0 0 1
0 I 0 I
0 I I 0
I 0 0 I
I 0 I 0
I I 0 0
I I I I

(el Truthtable

FIGURE 2.8
Three -Input exciusive·O Rgate

all three inputs are equal to I (i.e., when the total numbe r of I 's in the input variables is odd).
(Exclusive-O g gales are discu ssed further in Section 3.9.)

Positive and Negative Logic

The binary signal at the inpu ts and OUlpUISof an)"gate bas one of two values. except durin g
transition . One signal value repre sent s logic 1 and the other logic O. Since (WO signal values
are assigned to two logic values. there exist two different ass ignments of signallevel to logic
value. as shown in Fig. 2.9. The higher signal level is designated by H and the lower signal
level by L. Choo sing the high-level H to represent logic I defines a positive logic sys tem.
Choosing the low-level L to represent logic I defines a negative log ic sys tem. The terms posi­
tin ' and negative are somewhat misleadin g. since both signals rna)"be pos itive or both may
be negative.h is not the actual values of the signals that determine the t)"PC of logic, bUI rather
the ass ignment of logic values 10 the relative amplitudes of the two signal levels.

Hardware digital gates are defined in term s of sig nal ..-a lues such as H and L. It is up to
the user to decide on a positive or negative logic polarity. Consider. for example, the elcc ­
tronic gale shown in Fig. 2.1Ofb). The truth table for this gate is liMed in Fig. 2. IO(a). It
specifies the physical behavior of the gate when H is J volts and L is 0 vol ts. The truth table
of Fig. 2.I O(c) assumes a positive logic assignment. with H ;: I and L = O. Thi s truth table
is the same as the one for the AND opera tion. The graphic symbol for a positive logic Af\D
gate is shown in Fig. 2.lO(d) .

Logic Signal
value value

~
H

0 L

Logic
value

Signal
value

(a) Posinv e logic

fiGURE 2.9
Signal assignment and logic po larity

(bJSc:pli\ 'c: logic

62 Chapter 2 Boolean Algebra and Logic Gates

x y z

L L L
L H L
H L L
H H H

(a) Truth table
with Hand L

(b) Galt: block diagram

x y z

0 0 0
0 1 0

~
1 0 0 x
1 1 1 y

. ,
(c) Truth table for (d) Positive logic AND gate

positive logic

x y z

I I
I 0
o 1
o 0

1
I
1
o

(e) Truth table for
negative logic

(f) Negative logic OR gate

FIGURE 2.10
Demo nstration of positive and negative log ic

Now consider the negative logic assignment for the same physical gate with L = 1 and H = O.
The result is the truth table of Fig. 2. IO(e). This table represents the OR operation, even though
the entries are reversed. The graphic symbol for the negative-logic OR gate is shown in Fig.
2.10(f). The small triangles in the inputs and output designate a polarity indicator, the presence
of which along a terminal signifies that negative logic is assumed for the signal. Thus, the same
physical gate can opera te either as a positive-logic AND gale or as a negative-logic OR gale.

The conversion from positive logic to negative logic and vice versa is essentially an oper­
ation that changes J's to O's and O's to t's in both the inputs and the output ofa gale. Since this
operat ion produces the dual of a function. the change of all terminals from one polarity to the
other results in laking the dual of the function. The upshot is that all A~1) operations are con­
verted to OR opera tions (or graphic symbols) and vice versa. In addition, one must not forget
10 include the polarity-indicator triangle in the graphic symbols when negative log ic is as­
sumed. In this book, we will not usc negat ive logic gates and will assume thai all gates oper­
ate with a positive logic assignment.

Section 2.9 Integrated Circuits 63

2 .9 INTEGRATED CIRCUITS

An integrated c ircuit (abbreviated Ie) is a silico n semiconductor crystal. call ed a chip. containing
the electron ic component s for con..tructing digital gate... The variou s gates are interconnected
inside the chip to form the requ ired circuit. The chip is mounted in 3. cer amic or plastic co n­
tainer, and co nnections are welded to external pi ns to fo rm the integrated circuit. The number
of pins may range from Jol on a ..mall IC package to seve ral thou sand on a larger package.
Each Ie has a numeric designation prin ted on the surface of the package for identificati on .
Vendors provi de data books , catalogs. and Intern et wcbsue s that co ntain description.. and in­
formation abou t the IC", that the)' manu fac ture .

Levels of Integration

Dig hal K s arc often categ orized acco rding to the complexity of (heir circ uits. a.. mea..urcd by
the numbe r of logic gates in a single package . The di fferen tiation betwee n those chips which
have a few internal ga les and those having hundr eds of thousands of gates is made by cus­
tern ary re ference to a package as being ei ther a small- . mediurn -, large-, o r very large-scale in­
tegration device.

Small -scale integra /ion ISS I) devices co nta in several inde pende nt gates in a s ingle pac k­
age . The input s and outputs of the gates are co nnec ted directly 10 the pin s in the pac kage . Tbc
number of gates is usuall y fewe r than 10 and h limited by the num ber of pin s avail able in
Ihe Ie.

Medium -scale integrano« (~1S I) devices have a co mplexity of approx imately 10 to 1.000
gates in a single packa ge. They usually perform specific elementary dig ital operations. MSI dig­
ital function... are introdu ced in Chapter -sas decoders. adders. and multipl exe rs and in Ch apter
6 a.. registers and counters.

Large-scale integration ILSII devi ce .. contain thousands of gat es in a single pack age. They
include digital systems such a.. proce ssors. memory chips . and programmab le logic devices.
Some LSIcomponents are presented in Chapter 7.

\ 'fol)" large-scale integration lVLSI) device.. contain hundred of thousands of gates within
a single package . Examples arc large memory arrays and complex microcomputer chips. Be­
ca use of their small size and low co ...1. VLSI devices have revolutionized the co mputer system
design technology, g iving the designer the capability to create struc tures that were previou sly
uneconomical to build .

Digital logIc Families

Digi tal integ rated circuits arc claified not only by thei r co mplex ity or log ical ope rati on. hut
also by the spec ific cire uittechnology 10 which they belo ng. 111e ci rcuit tech nology i..referred
to a.. a digital logic fa mi!.\" Each logic family ha.. its uwn ba...ic elec tro nic circuit upon which
more complex digital circuits and component!'> are developed. The basic circuit in each tec h­
nology is a NA :'ol J). KOR . or inverter gate. The e lectron ic co mponents em ployed in the co n­
struction of the basic circuit are usuall y used to name the technology. ~1an)' different logic

64 Chapter 2 Boolean Algebra and logic Gates

families of digital integrated circuits have been introduced commercially. The follo wing are the
most pop ular:

TIL
ECL
MOS

CMOS

transi stor-transistor logic;

emitter-co upled logic;

metal-oxide semiconductor;

complementary metal-oxide semiconductor.

TIL is a logic family that has been in use for a long time and is considered to be standard.
ECl has an advantage in systems requiring high-speed operation. MOS is suitable for circuits
that need high component density, and CMOS is preferable in systems requiring low power con­
sumption, such as digital came ras and other handheld portab le devices. Low power consump­
tion is essential for VLS I design; therefore, CMOS has become the dominant logic family,
while TIL and ECL are declining in use. The basic electronic digital gale circ uit in each logic
family is analyzed in Chapter to. The most important parameters that are evaluated and com­
pared are discussed in Section 10.2 and are listed here for reference:

Fan-out specifies the number of standard loads that the output of a typical gate can drive
without impairing its normal operation. A standard load is usually defi ned as the amount of cur­
rent needed by an input of another similar gate in the same family.

Fan-in is the number of inputs available in a gate.
Power dissipation is the power consumed by the gate that must be available from the power

supply.
Propagation delay is the average transition delay time for a signal to propagate from input

to output. For example , if the input of an inverter switches from 0 to I , the output will switch
from I to 0, but after a time determi ned by the propagation delay of the device. The ope rating
speed is inversely proportional to the propagation delay.

Noise margin is the maximu m external noise voltage added to an input signal that does not
cause an unde sirable change in the circui t output.

Computer-Aided Design

Integrated circui ts having submicron geometric features are manufactured by optically pro-­
jecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coaled with a
pho toresistlve material that either hardens or softens when exposed to light. Removing extra­
neous photoresist leaves patterns of exposed silicon. The exposed regions are then implanted with
dopant atom s to create a semiconductor material hav ing the electrical properties of transistors
and the logical prope rties of gates. The design process translates a functional specification or
description of the circuit (Le., what it must do) into a physical specification or description (how
it must be impleme nted in silicon).

The design of digital systems with VLSI circuits co ntaining mill ions of transistors and
gates is an enormous and formida ble task. Systems of this co mplex ity are usually impossi­
ble to develop and verify without the assista nce of com puter-ai ded design (CAD) tools,

Section 2.9 Integrated Clrcutts 6S

.....hich con sist of ...oftware pro grams that su pport computer-based re present at ion s of circuits
and a id in the dev el opment of d igit a l hard ware by automat ing the design proc ess. Elec ­
troni c design autom at ion (EOA) coven all phases of the de sign of integrated circu its. A
typic al design flow for crea ting VLSI circu it s co nsis ts of a !iequence of step" beginning
with design entry (e.g.•e ntering a scbematic! and culminating with the generation of the data ­
base tha t co nta ins the pho tomask used 10 fab ricate the IC. There are a variety of o ptio ns
available for crea ting the physical realizat ion of a digital ci rcuit in silicon . The designer can
choo ...e be tween an a pplica tion-specific integ rat ed circu it (ASIC). a field -prog rammable
gate a rray (FPG Al. a pro grammable logic de vice (PLO). and a full-custom IC. With eac h
of these devices comes a sel o f CA D tool s thai pro vide the necessary software to facilitate
the hardware fabrication of the unit . Eac h of these technol ogies has a mar ket niche deter­
min ed by the size of Ihe market and the unit COSI of the de vices thai are requ ired 10 imple­
ment a de sign.

Some CAD syste ms include an edi ting program for creating and mod ifying schematic dia­
grams on a computer screen. Th is process is called schematic capture or schematic entry. with
the aid of menu s. keybo ard co mmands. and a mou se. a schematic edito r can draw circuit dia­
gram s of d igital circuitson the computer scree n. Components can be placed on the screen from
a list in an inte rnal libr ary and can the n be connected wi th lines thai represent wires. The
schematic entry software creates and manages a database contain ing the info rma tion produced
with the schematic. Primitive gate..and funct ional bloch have associated models tha t allow the
functionality ti .e.. logical behavior) and timing of the circu it to be veri fied . Veri fication i" per­
formed by applying input .. to the ci rc uit and using a logic simulator 10 determine and di..play
the outputs in text or waveform fonnal.

An important development in the design of digital systern.. i.. the u..e of a hardware de­
scription languag e (HDL). Such a languag e resembles a co mputer programming language.
but is specifically oriented to describing digital hardw are . It represents log ic diagram s and other
digu al informati on in textual form to describe the funct ionality and structure of a circu it .
Moreo ver, the HDL description of a ci rcuit' s funct ionality can be abstract. withou t refere nce
to specific hardw are.thereby freeing a designer to de vote attention to higher level functional
detail te .g.• under certain co nditions the ci rcuit must detect a pa rticular pa ttern of I 's and D's
in a serial bit "ITeam of data) rather than transisror-level detail. HDL-based model s of a cir­
cuit o r system are ..imula ted 10 chec k and verify its functionality before it is submitted 10 fab­
ricauon. there by red ucing the risk and waste of manufacturi ng a circ uit tha i fa ils to ope rate
correctly. In tandem with the emergence of HDL-hased de sign language s. 1001" have been
developed to automati cally and op timally synthesize the logic described by an HD L mod el of
a ci rcuit. These two adv anc es in technology have led to an almo..t total reliance by industry
on HDL-based synthesis too ls and methodologies for the design of the circuits of co mplex de­
gttal sys tems. Two hardware descriptio n languages- Veri log and VHDL-have been ap­
proved as sta ndards by the Institute of Electronics and Electric al Eng ineers (IEEE) and arc in
use by de sign team",wor ldwid e . The Ver ilog HOL i" introduced in Section 3. 10. and beca use
of its importance . we include several exerc ises and desi gn prob lems based on Veri log through­
out the book .

(b) F = x '..: ' + yz

66 Chapter 2 Boolean Algebra and Logic Gates

PROBLEMS

Answers 10 prob lems marked with • appear at Ihe end of the book.

2.1 Demonstrate the validity of Ihe following identities by means of truth tables :
(a) DeMorgan's theoremfor three variables: (x + y + z)' '= x'y'z' and (xyz)' '= .r" + y' + ;:'
(b) The distributive law: x + yz '= (x + y)(x + e)
(c) The distributive law : x (y + z) = xy + .cz
(d) The associative law: x + (y + z) = (x +)") + Z

(e) The associative law and x(yz) = (xy).::

2.2 Simp lify the following Boolean expressions to a minimum number of literals:
(a)* xy + x)" (b)" (x + y)(x + y ')
(c)* x)'.:: + x')" + xy..:' (d)" (A + B)' (A' + B')'
(e) xYZ' + x'YZ + xyz + x'YZ' (f) (x + y + z')(x' + y' + e)

2.3 Simplify the fo llowing Boolean expressi ons to a minimum number of literals:
(a)* ABC + A 'B + ABC' (b)" x'si + xz
(c)'" (x + y)'(x' + y') (d) " xy + X(WI + WI')

(e)"(BC' + A' D)(AB' + CD') (f) (x + y' + z')(x ' + I ')

2.4 Reduce the following Boolean expressi ons to the indicated number of literals:
(a)" A'C' + ABC + AC' to three literals
(b)" (x 'y' + I)' + Z + xy + w z to three literals
(e)" A'B (D ' + C'D) + B(A + A'C D) toone literal
(d)" (A' + C)(A' + C')(A + B + C'D) to four literals
(e) ABCD + A'BD + ABC' D to two literals

2 .5 Draw logic dia grams of the circuits that implement the original and simp lified expressions in
Problem 2.2.

2.6 Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.3.

2.7 Draw logic diagrams of the circuits that implement the original and simplified expressions in
Problem 2.4.

2.8 Find the complement of F = wr + yz: then show that FF' = 0 and F + F ' = I.

2.9 Find the comp lement of the following expressions:
(a)" xy ' + x'y (b) (A 'B + CD)£' + £
(c) (x' + Y + z')(x + y')(x + e)

2. 10 Given the Boolean functions F1and F2. show that
(a) The Boolean function E = f 1 + F2 contains the sum of the mintenns of F I and F 2.
(b) Th e Boolean fun ction G = F 1F 2 conta ins on ly the minterm s that are common to F t

and F2.

2.11 List the truth table of the function:
(a)* F = xy + .ry ' + y'Z

2.12 We can perform logical operations on strings of bits by considering eac h pair of corresponding
bits separately (called bit wise oper ation). Given two eight-bit strings A = 10110001 and
B = 10101100, evaluate the eigh t-bit result after the following logical operations: (a)* AND .
(b) OR. (C) '" XOR . (d)'" NOT A, (el ~OT 8 .

Problems 67

2.13 Draw logic diagrams to implement the follo-ing Boolean expressions:
(a) Y = A + H + H' (A + C)
(h) Y = A(B ffi D) + C '

(c) r '" A + CD + ABC
(d) Y '" (A Ell C)' + B
(e) y "" (A' + B') (C + tr;
(f) Y = l eA + B') (C' + D J]

2 .14 Implement the Boolean function

F '" xy + , \ + y' .::

fa) with AND. OR, and inverter gates.
(h)*with OR and inverter gates,
(c) with AND and inverter gates.
fd) with NAND and inverter gales, and
rej with NOR and inverter gates,

2 .15· Simplify the following Boolean functio ns T I and T2 to a minimum number of literals:

A B C T, Tz

0 0 0 I 0
0 0 1 1 0
0 I 0 I 0
0 I 1 0 I
1 0 0 0 1
1 0 1 0 1
1 I 0 0 1
1 I 1 0 1

2 .16 The logical sum of all n nnrerms of a Boolean function of /I variables i ~ I .
(a) Prove the previous statement for 11 = 3.
cb) Suggest a procedure for a general proof.

2 .17 Obtain the truth table ofthe following functions. and express each function in sum-of-nnnterms
and product-of-maxterms form :

(a)* ClY + :)(Y + x.::) Ib i (x + ."')(y ' + ;:)
(c) x' ;: + II'X' y + 11'.\';:' + lI" y ' Id) (.l ." + vc' ol ' ;:)(X + .::)

2 .18 For the Boolean function

F = xy'.:: + x'y ' .:: ... 1I" .l ." + lI"X'Y + II'X."

fa) Obtain the truth table of F.
(b) Draw the logic diagram. using the original Boolean expression.
(c!* Use Boo lean algeb ra to simplify the function to a minimum number of literals,
(dj Obtain the truth table of the functio n from the simplified expression and show that it is the

same us the one in pan (a),
Ie) Draw the logic diagram from the slmplifled expression. and compare the total number of

gates wnh the diagram of part (b),

68 Chapter 2 Boolean Algebra and Logic Gates

2.1~ Express the following function as a sum of minterms and as a product of maxrerms:

F(A ,B.C. D) "" B'D + A'D + BD

2 .20 Express the complement of the following functio ns in sum-of-minterrns form:
<a} F(A, B, C, D) "" I (3, 5, 9. 11 . 15) (b) F(x, y, z] "" IT(2. 4, 5. 7)

2,21 Convert each of the following to the other canonical form:
<a) F(x.)'. z) "" I (2,5 .6) (b) F(A.B.C,D) "" IT(O.I.2,4, 7, 9,12)

2.zr Convert each of the follow ing expressions iOlo sum of prod ucts and prod uct of sums:
(a) (AB + C)(B + C D) <b) s' + x(x +)")()' + z')

2 .23 Draw the logic d iagram corresponding to the following Boolean expre ssions without simplifying
them:
(a) BC + AB + ACD (b) (A + B)(C + D)(A ' + B + D)
(c) (AB + A' B')(C D' + C'D) (d) A + CD + (A + D')(C' + D)

2.24 Show that the dual of the exclu sive-OR is equal to its complement.

2.25 By substituting the Boolean expre ssion equivalent of the binary operations as defined in Table 2.8,
show the following:
(a) The inhibition operation is neither co mmutative nor associative.
(b) The exclu sive-OR operation is commutative and associative .

2.26 Show that a positive logic NAN D gate is a negative logic r-;OR gate and vice versa .

2 .27 Write the Boolean equations and draw the logic diagram of the circuit who se outputs are defined
by the following truth table:

" " • b ,
I 0 0 0 0
0 0 0 0 I
0 I 0 I 0
I I 0 I I
0 I I 0 0
0 I I 0 I
I I I I 0
I 0 I I I

2 ,28 Write Boolean expressions and construc t the truth tables descri bing the outputs of the circuits
described by the following logic diagrams:

a

a
b

b ,
c y

d
d ,,

f
(a (b '

Re fere n ce s 69

REFERENCES

1. BOOL F-. a. 1 11 5~, All Im·f'.Higaliml "jlhl' UIII 'S rif 71IO/igll/ . New York: Dover.

2 . D1En lE\"F. R. D. 1.. 19XX. Logic Design ofDigil tll Svstems. Jd ed . Boston: Allyn and Bacon.

J . HlJ STl~GTO~ . E. V.Sets of independent postulates forthe algebra of logic . Trans. Am. A!(/fh.Soc ..

5 (1 90~ I: 2811-309 .

4 . IEEE Standard iiurdware Desc ription Lllnglla f(r 8m'ed 01/ Ihl<' V".rilug Hard ware Descript ion

u mg/il/gfO. La nguage Reference Manual (LRM). IEEE Std. I364 -1995. 1996. 200 1. 2005. The

tnsunnc of Electri ca l and Elect ronics Engineer s. Piscataway, NJ.

S . IEEE Standa rd Vl ID!. LmlgllOgt Reference M/IIwIlI (L RM). IEEE Std. 1076- 19117. 1988. The

tnvnure of Electrical and Elc..x ronlcs Engineer s. Piscataway. NJ.

6 . M ...so. M. M.. and C. R. KI\.lE. 2000. Logic (1fI(1 COIII/lllter D r sign Fundamentals, 2d ed. Upper

Saddl e River. NJ: Prentice Hall.

7 . SH "'S"O~ , C. E. A sy mbolic a nalysis of rel ay and switching circuits, Trans . AlEE 57 (1938):

7 13-723.

